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Project Abstract 

 

 

Low-code development platforms (LCPD) are software development platforms on the Cloud, 

provided through a Platform-as-a-Service model, which allows users to build completely 

operational applications by interacting through dynamic graphical user interfaces, visual 

diagrams and declarative languages. They address the needs of non-programmers (so called 

citizen developers) to develop personalised software, and focus on their domain expertise 

instead of implementation requirements. 

 

Lowcomote will train a generation of experts that will upgrade the current trend of LCPDs to a 

new paradigm, Low-code Engineering Platforms (LCEPs). Our envisioned LCEPs will be: 

● open, allowing to integrate heterogeneous engineering tools;  

● interoperable, allowing for cross-platform engineering;  

● scalable, supporting very large engineering models and social networks of developers, 

and  

● smart, simplifying the development for citizen developers by machine learning and 

recommendation techniques.  

 

This vision will be achieved by injecting in LCDPs the theoretical and technical framework 

defined by recent research in Model Driven Engineering (MDE), augmented with Cloud 

Computing and Machine Learning techniques. This is possible today thanks to recent 

breakthroughs in scalability of MDE performed in the EC FP7 research project MONDO, led 

by Lowcomote partners. 

 

The 48-month Lowcomote project will train the first European generation of skilled 

professionals in LCEPs. The 15 future scientists will benefit from an original training and 

research programme merging competencies and knowledge from 5 highly recognised academic 

institutions and 9 large and small industries of several domains. Co-supervision from both 

sectors is a promising process to facilitate agility of our future professionals between the 

academic and industrial world. 
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Executive Summary 

 

 

This document describes the design and early prototype of a cloud-based, low-code engineering 

editor, with unified support of heterogeneous technologies. The document also describes the 

design of a system to facilitate the construction of backends for recommender systems, which 

can be integrated with editors for domain-specific languages. In further deliverables (D3.3), 

these two parts will be integrated, including a front-end based on natural language to access the 

recommendation. 
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1. Introduction 

 

The present document is a deliverable of the Lowcomote project (Grant Agreement n°813884), 

funded by the European Commission Research Executive Agency (REA), under the Innovative 

Training Networks Programme of the Marie Sklodowska Curie Actions (H2020-MSCA-ITN-

2018). The purpose of this document is to provide an overview of the design decisions and first 

prototypes for a cloud-based low-code engineering editor, with unified support for 

heterogeneous technologies, and for customized recommendations. 

 

Figure 1 shows a high-level structure of the architecture. Both the graphical editor and the 

recommender systems will be the front-ends of the envisioned LCEP, called Lowcomotive. 

Both components can be tailored to specific domains – since the goal is that they can be reused 

to create LCEP in arbitrary domains – and be deployed on a cloud infrastructure. Such 

components need to interact with the model repository (designed in WP4). The graphical editor 

is the focus of the work of ESR2, while the recommender is the focus of ESR1. Both 

components will be analysed in the next two sections. 

 

 
Figure 1.: High-level overview of the architecture 
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2. Cloud-Based Domain-specific Graphical Modelling Environments 

 

As the project proposal mentions, LCDPs allow describing different aspects of an application 

using graphical models. However, when the targeted application is complex or encompasses 

many concepts, their models become large and, without appropriate tool support, they get 

difficult to create, reuse, navigate, and comprehend. Hence, mechanisms to make modelling 

more scalable are needed. 

There are a few domain-specific modelling frameworks for web-based editing, but creating 

web-based graphical editors with existing frameworks is still hard and time-consuming due to 

their low-level code nature. Moreover, the created editors are not scalable beyond tens of 

elements, are tied to a modelling technology, do not enable rich modelling of editor aspects 

(e.g., domain-specific abstractions), or do not connect different languages through views. 

To alleviate these problems, the Lowcomote project proposes a novel approach to ease the 

creation of multi-view graphical editors for the Cloud. Instead of relying on low-level 

JavaScript graphical frameworks, our proposal is founded on language engineering principles. 

This way, all aspects of the editor (abstract and concrete syntax, user interaction, view 

definitions and applicable abstractions) will be described through models. The graphical front-

ends will be decoupled from the back-end modelling technology, to enable heterogeneous 

cross-modelling solutions e.g. based on Eclipse EMF, JSON, Ontologies or proprietary 

knowledge-based representations like the one supported by UGROUND’s ROSE [DNF+20]. 

To enable more scalable modelling, the approach will provide extensible libraries of model 

abstractions and graph summarization techniques, to support creating more succinct model 

views. A Cloud-based modelling environment will be ideal for this purpose, to provide enough 

computation power to perform complex abstractions (enabling better model comprehension and 

navigation) over large models.  

Another goal is being able to profit from existing editors built for e.g., the Eclipse ecosystem. 

This way, automated migration from such desktop scenarios into a web editor would be 

desirable, to enable their integration with LCEPs. 

In the rest of this section, we first provide an state-of-the-art revision of some of the current 

main frameworks and approaches, and then report on the approach we have taken (partly based 

on [RDC+20]). 

2.1 Web-based graphical modelling environments: state of the art 

Environments to automate the development of graphical DSLs (DSLs) have existed since the 

end of the 90s. Tools like KOGGE [EWD+96], DOME [BGS+10], GME [LMK+02], Diagen 

[M02], MetaEdit+ [KT08] or AToM
3
 [dLV02], have laid the foundations of some of the tools 

in use today.  

The second wave of tools for graphical DSL definition started with the emergence of model-

driven engineering approaches to software development [BCW17], and especially with the 

popularization of the Eclipse framework. This lead to a plethora of tools targeting the 

generation of editors for this environment, like Tiger [BEE+08], the Graphical Modelling 

Framework (GMF) [GMF20] which is based on the Eclipse Graphical Editing Framework 

(GEF) [GEF20], EuGENia [KGR+17], Spray [GB16], Graphiti [Gra20], and Sirius [Sir20]. 

Graphical DSLs also play a fundamental role in LCDEs. However, because LCDEs are based 

on cloud infrastructure, therefore require web-based editors. Hence, there is a third wave of 

tools for automating the creation of web-based graphical editors, which are the most interesting 
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for our project, since they can be integrated into LCEP. We review next the most representative 

ones. Please note that we focus on high level frameworks for their creation (i.e., based on 

software language engineering principles) and not on low-level frameworks based on 

JavaScript libraries, since we want to compare editor features. 

WebGME [MKK+14] is a web-based evolution of the GME [LMK+02] environment. 

WebGME is a tool to create graphical DSLs directly in the browser. It is based on software 

language engineering principles, using a UML class diagram-based meta-models to specify the 

modelling concepts, relationships and attributes. It also supports model versioning and 

collaboration on the cloud. 

AToMPM [SVM+13]  is a web version of AToM
3
 [dLV02]. It allows defining graphical DSL 

editors that run on the web, and to specify DSL semantics using graph transformations 

[KEP+06]. It supports two types of collaboration mechanisms in real-time. On the one hand, 

screenshare allows two or more clients to share exactly the same drawing area: any 

modification made to a model (abstract or concrete syntax) is replicated on all observing 

clients. On the other, modelshare only shares the abstract syntax of a model between clients. 

Eclipse Theia [The20] is an open-source IDE platform that runs in browsers and on desktops. 

Theia provides three main elements: First, a customizable “workbench” supporting view, 

editors, menus, toolbars, etc. This provides the frame to embed modelling-related features, such 

as graphical editors, code generators and so on. Second, a flexible extension mechanism to add 

custom features, but also to reuse existing modules provided by frameworks. Third, based on 

this extension mechanism, the tool makes available a collection of reusable generic features, 

such as Git integration, a file explorer or a search feature.  

Sprotty [Spr20] is an Eclipse project that enables adding diagrams to web applications with 

little effort. It is a framework -- at much lower level than tools such as AToMPM or WebGME 

-- based on SVG for rendering and CSS for styling. However, we review it here, since it has 

been integrated with Eclipse Theia to provide support for diagrammatic views. Sprotty's 

reactive architecture makes possible to distribute the execution of a diagram arbitrarily between 

a client and a server, which matches the scenario of the Language Server Protocol (LSP, see 

below).  

EMF.cloud [EC20] is a project – still under development – aiming at making EMF-based 

technologies accessible via the cloud, including graphical editors, based on Eclipse Theia. Its 

central component is the model server, which provides a set of APIs to connect model clients to 

model instances (similar to EMF-Rest [ECG+16]). However, it additionally enables 

synchronization of changes and command-based modifications across multiple modelling 

editors that may run in parallel on a client. It also allows retrieving model instances in different 

formats, e.g. as JSON. This is enabled by another sub-component of EMF.cloud, the EMF to 

JSON converter. Basically, the model server is like a ResourceSet with an EditingDomain for a 

client-server scenario. Based on the model server and the Graphical Language Server Protocol 

(GLSP) [RCW+18], EMF.cloud hosts a browser-based version of the Ecore tools based on 

Eclipse Theia allowing creating Ecore models in the browser. This also includes a tree-based 

form editor similarly to what we can generate with EMF.  

GLSP [RCW+18]. The Graphical Language Server Platform (GLSP) is a framework for 

building web-based diagram editors, running in the browser. The concept of GLSP is based on 

the Language Server Protocol (LSP), which is the de-facto standard for implementing textual 

code editors on the web [LSP20]. The general idea is to cleanly encapsulate the client and the 

server part of an editor via a defined protocol. The client is responsible for rendering and for 

executing time-critical operations such as drag and drop. The server is responsible for 
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providing any domain-specific business logic, e.g. what shapes to display, how they can be 

connected and how the domain model is updated on creating a node.  

The diagram client of GLSP is largely generic, which means it can be re-used for custom 

diagram type by adding custom shapes if needed. To create a custom diagram for a domain-

specific language, we need to create a custom “graphical language server”. Similarly to LSP, a 

GLSP server can be written in any language, since the communication to the client is 

encapsulated in a defined protocol. This gives the user freedom of choice for new projects and, 

even more importantly, it allows to adapt any existing code in the user language server. For 

instance, it can connect any diagram logic that is already implemented in any language for the 

desktop.  

To sum up, GLSP provides two high-level benefits. First, the architectural frame, i.e. the strong 

encapsulation, allows to build flexible solutions and also reuse existing business logic on the 

web. Second, GLSP provides ready-to-use components for the creation of web-based diagram 

editors, i.e. an adaptable and powerful diagram client, the communication protocol and a server 

framework to create custom domain-specific language servers. 

EuGENia Live [RKP12] is a web-based tool for designing graphical DSLs. It encourages the 

construction and collaboration of models and meta-models in iterative and incremental 

development. The tool supports starting from a meta-model of the DSL, and then modify it 

based on examples. As a final result, EuGENIA live generates a GMF Eclipse based graphical 

modelling environment. 

Altogether, we have analysed several tools to create graphical editors for the web. However, we 

are not aware of solutions supporting migration of existing editors to the web, to enable their 

integration with low-code development platforms. 

2.2 Lowcomotive approach to DSL definition 

Domain-Specific Languages (DSLs) are defined in terms of their abstract syntax (the primitives 

they support, their properties and their relations), concrete syntax (how the DSL is visualized, 

typically graphically or using text), and semantics (how the DSL is executed) [BCW17]. In 

model-driven development approaches, all these three parts are defined using models. 

Our proposal for the Lowcomotive engine in the project is to follow such standard separation of 

concerns, as Figure 2 shows. Please note that this WP is only concerned with the DSL syntax, 

while its execution semantics is dealt with in WP5. 

 
Figure 2.: Lowcomotive approach and architecture for defining DSLs for LCEPs 
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This way, the abstract syntax of the DSL will be defined via a meta-model [BCW17], typically  

a class diagram describing the elements of the language, their properties, relations and integrity 

constraints. We will consider graphical concrete syntaxes, which are given in reference (e.g., as 

annotations) to the abstract syntax model. Then, the approach will specify elements to enhance 

the DSL scalability, like views [BMD+20] (to display different concerns of a model in different 

diagrams), or abstraction patterns [JGL17][dLGS13] (to summarize parts of a model into a 

more abstract representation, which can be explored using hierarchical decomposition).  

Finally, to cope with heterogeneity, we will provide a specification of how the DSLs can be 

connected to each other. For this purpose we plan on interfaces enabling different types of 

connections between DSLs: 

● Open: From specific elements in the DSL to any element in any DSL 

● Restricted: From elements in the DSL to concrete elements in other specific DSLs 

Moreover, connections can be realized using different styles: using views (the connected model 

is displayed in a different view), or embedded (the connected model elements are displayed on 

the same diagram view). 

The project goal is to enable this DSL definition both using web editors (from LCEPs) and 

from other means, like the Eclipse ecosystem, to enable migration of existing editors to the web 

for their integration into LCEPs. 

2.3. Proof-of concept approach: enabling migration of editors to the web 

We have performed a proof-of-concept preliminary prototype of the proposed architecture as 

shown in Figure 3. In this prototype, the abstract syntax is defined using the Eclipse Modelling 

Framework (EMF) [SBP+08], and the concrete syntax is defined using Eugenia [KGR+17]. 

This is an interesting scenario that enables migration of editors already created for the 

EMF/Eclipse ecosystem into the web. For the target, we use DPG/PSI, a JavaScript-based 

framework developed by UGROUND for diagramming in their LCEP ROSE [CJD17]. In this 

first prototype, we do not support the specification of scalable features and heterogeneity 

support. 

 
Figure 3.: Proof-of-concept approach to migrate DSLs to the web 
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In the following sections, we first provide more details on EMF and EuGENIA, describe the 

architecture and tool support, and a preliminary evaluation. These sections are based on our 

publication [RDC+20]. 

2.3.1 Eclipse Modeling Framework and EuGENia 

The Eclipse Modeling Framework (EMF) is a widely used (partial) implementation of the 

meta-object facility (MOF) standard of the OMG [MOF16]. EMF is a meta-modelling 

framework integrated within Eclipse. It supports a notation (Ecore) for creating meta-models, 

and a code generation facility that produces Java code (enabling the construction of models and 

model transformations programmatically) and tree editors to create models interactively. EMF 

supports model serialization using the XML Metadata Interchange (XMI), an OMG standard 

for meta-data exchange. 

As an example, assume we would like to create a modelling editor for Petri nets using EMF. 

Petri nets are a popular formalism to model concurrent systems, made of places, which may 

hold zero or more tokens, and that can be connected to transitions via input and output arcs. 

Figure 4 shows the Ecore meta-model of Petri nets with EuGENia annotations. The meta-model 

supports Petri nets with weighted arcs (attribute tokenNo in ArcPT and ArcTP) and time in 

transitions to model delays. By convention, most Ecore meta-models have a root class, which 

contains directly or indirectly all other classes via composition relations. This way, each class – 

except the root class – is contained into another one. This is especially useful to edit models 

using the generated tree editors since the instances of the contained classes appear as children 

of the container ones. 

 

Figure 4:  Ecore meta-model for Petri nets with EuGENia annotations 
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While EMF generates a tree editor by default, more user-friendly editors are typically required. 

They are normally either textual or graphical. Here, we focus on graphical DSLs. There are 

several technologies to help in the construction of graphical editors within Eclipse, like 

Graphiti, Sirius, GMF or EuGENia.  We decided to support the latter technology due to its 

popularity, since it is extensively used by both researchers and practitioners [CJD17]. EuGENia 

simplifies the development of GMF-based graphical model editors by automatically generating 

the required models needed by the GMF editor construction framework from a single annotated 

Ecore meta-model.  

 

Figure 5:  EuGENia graphical editor for Petri nets  

As an example, Figure 5 shows some annotations indicating that Places, Transitions and 

Tokens are to be displayed as nodes (annotation gmf.node), while arcs are to be represented as 

links (annotation gmf.link), and all elements are to be placed in the diagram represented by the 

PetriNet (annotation gmf.diagram). Figure 5 shows the resulting editor. It contains a canvas to 

graphically edit the model, and a palette to create the objects. The object attributes can be 

changed from an Eclipse properties view. 

2.3.2  DPG (Diagram Programming Generator)  

The web technology that we target in this initial prototype is based on the Programmable 

Solutions Interpreter Engine, (PsiEngine) [CJD17]. PsiEngine implements, evaluates, interprets 

and executes DSLs described in XML within the web client. It uses HTML5, CSS3, JavaScript 

and DOM together with technologies, services and tools from Web 2.0 and the specification of 

XML-DSL grammars in order to build web components, widgets, and dynamic web sites to 

give the solution to specific web application problems or parts of them.  

PsiEngine is a generic lightweight JavaScript framework which is a cross-browser platform that 

processes and evaluates programs written in Psi Language. On top of PsiEngine, a set of Psi 

languages (Graph Library Psi GLPsi, Diagram Psi DPsi, Visual Tool Psi TPsi and Data Form 

Psi DFPsi) were created to develop the functionality of a programmable diagram.  

A programmable diagram is a set of graphical elements that define an SVG-based diagram, and 

each graphical element can have associated visual tools (like dialogue boxes, toolbars, pop-ups, 

floating menus, menus, and drag and drop), programming utilities (classes, scripts, functions, 
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and variables) and heterogeneous information data sources (XML/JSON) that determine their 

appearance and content.  

The Diagram Programming Generator (DPG) is a layer on top of the PsiEngine that encodes 

DSLs as a JSON-based grammar, which specifies the elements necessary to create a 

programmable diagram in PsiEngine. The execution engine that interprets a DPG specification, 

is called DPG-PsiEngine. Its objective is to generate the code in the different Psi languages and 

to start the programmable diagram. Additionally, in DPG-PsiEngine a template engine was 

incorporated for the administration and generation of graphical elements and forms. It also 

includes components for connection via REST API, to obtain JSON information. These 

frameworks are used within UGROUND as a basis for the low-code solutions, and some 

examples are available at http://devrho.com/. 

2.3.3 Architecture and Tool Support 
This section presents our migration approach, architecture and tool support. First, we describe 

how the abstract syntax is migrated (Section 2.3.3.1), and then the graphical concrete syntax 

(Section 2.3.3.2).  

2.3.3.1 Migrating the abstract syntax 

Our approach starts reading the domain meta-model and transforming the classes into the DSL-

JSON format of DPG. All the (non-abstract) classes in the EMF meta-model are placed inside a 

DPG table called "Elements'': {...}. Then, inside such a table, they are placed into a key "Type": 

{...}. Later, classes need to be classified as nodes or connectors, as we will explain in the next 

section. All the attributes and references of the classes are stored into a key "Fields": {...}, and 

then attributes are associated with different types of DPG controls depending on their eType, as 

shown in Table 1. The source and target of references are specified using the JSON keys 

"Start": and "End":. 

Table  1: Mapping EMF types to DPG Controls 

 

In EMF meta-models, we may have abstract classes and inheritance hierarchies. However, 

neither abstract classes or inheritance are supported by DPG. To overcome this limitation, our 

mapping flattens the inheritance hierarchy, collecting the attributes and references of upper 

classes in the hierarchy, and replicating them in lower classes where they are required. 

2.3.3.2 Migrating the concrete syntax 

Our approach also translates EuGENia annotations to the DPG format, which distinguishes 

nodes and connectors. Hence, we have to decide on the basis of EuGENia annotations which 

classes or references of the EMF meta-model are going to become nodes, and which ones will 

be connectors. In addition, we need to consider the different graphical styles configured in 

these annotations. 

 

http://devrho.com/
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Listing 1: Node and Link annotations in EuGENia 

 

An example of EuGENia annotations is shown in Listing 1. For the case of nodes, using key-

value pairs, the DSL designer can specify the attribute to be shown as label of the node (key 

label), the figure representing the node (ellipse), the style of the figure border (border.styles), 

the colours of the figure background, label and border (color, label.color, border.color) and the 

border width (border.width). 

 

Listing 2:  DPG Code for nodes and connectors 

 

For links attached to nodes, we need to define their source and target references (keys source 

and target), and we can also specify a label for the link (label) and graphical styles including 

colour, width, line style, and decorations for the source and targets of the link. Details on 

additional EuGENia styles can be found at https://www.eclipse.org/epsilon/doc/eugenia/. In 

DPG the graphical information is stored in JSON, where we need to define libraries of nodes 

and connectors, as Listing 2 shows. Please note that DPG uses CSS styles, e.g., for colour 

values. 

  

https://www.eclipse.org/epsilon/doc/eugenia/
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Table 2: Mappings between EuGENia and DPG for figures and decorations  

 

The details of the mapping of different styles of nodes and links between EuGENia and DPG 

are described in Tables 2 and 3. The former table details the mappings between figures and 

decorations for links and the latter describes the mapping between the other annotation options. 

In DPG, when attributes of nodes or links are to be edited, a dialogue box is presented. Each 

attribute can be associated with a different control, depending on its eType, to properly edit its 

value. Finally, the information about the palette and the corresponding icons are also translated. 

Regarding the limitations of our translation, we do not currently support the EuGENia 

annotation @gmf.affixed to attach nodes to the border of another one. In addition, the 

@gmf.compartment annotation, which allows node nesting, is not natively supported either. 

However, we provide a workaround that allows inserting elements in the container objects. 

Table 3: Mapping EuGENia and DPG styles for nodes/links 
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2.3.4 Tool Support 

We have created a tool called ROCCO (MigRatiOn towards Cloud Based GraphiCal EditOr) 

that implements the previous mapping. ROCCO is an Eclipse plugin that reads Ecore meta-

models with EuGENia annotations and synthesises the necessary DPG files. For this purpose, it 

uses the Acceleo code generation language. The architecture of the tool is shown in Figure 6, 

which also shows the generation process. 

 
Figure 6: Code Generation Template Schema  

Figure 7 shows the resulting DPG editor for the running example. It can be seen how the 

synthesized editor mimics well the original one defined with EuGENia (cf. Figure 5). 

 

Figure 7: DPG-PsiEngine graphical editor for Petri nets 

 

2.3.5 Evaluation 

In this section, our goal is to answer the following research question: Can ROCCO migrate 

Eclipse-based graphical modelling editors (EuGENia) to the web, to facilitate their integration 

with low-code platforms?  

For this purpose, we have evaluated our tool by migrating existing EuGENia editors into DPG-

PsiEngine. We have taken nine EuGENia editors from the Epsilon online repository (taking all 
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meta-models with EuGENia annotations) and checked whether a complete DPG editor is 

obtained, required manual changes or had lacking functionality.  

 

Table 4: Results of the evaluation 

 

The evaluation results are shown in Table 4. The table shows the meta-model size in classes, 

and the lines of code of the generated DPG specifications. Then, it shows the number of nodes, 

links (applied to nodes and references), compartment and affixed annotations. We marked with 

Yes/No whether the different annotations were correctly translated between these two 

platforms. For containment, we used Yes*, since we emulate compartments as graphical areas 

with less functionalities than in EuGENia. Overall, we could fully migrate eight out of the nine 

editors. For the other one (components), we obtained a working editor, but with lacking 

functionality regarding affixed features. In the EuGENia editor ports can be affixed to 

components, to appear in their borders. Instead, they are connected via links in the DPG editor. 

Overall, we can answer our research question in a positive way, since in all cases we obtained a 

working editor, albeit with lacking functionality for affixed, and less sophistication for 

compartments. These limitations will be addressed in future work. 
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3. Recommendation support for modelling environments  

In parallel to the work presented in Section 2, and attached to the work of ESR1, we are 

developing a generic model-driven framework capable of generating ad-hoc, task-oriented 

recommender systems (RSs) to assist in the modelling tasks. The framework provides a DSL 

where RSs designers can define the settings that they would like to have in the RS. Thus, the 

DSL describes the different aspects of recommender systems, including a description of the 

recommended items and their features, the profile and preferences of the users of the 

recommendations, the recommendation methods, and the evaluation procedures and metrics. 

The following sections contain background information related to recommender systems 

(Section 3.1), the proposed approach (Section 3.2), the used domain-specific language (3.3), the 

data preparation (3.4), the considered recommendation engines (3.5) and the evaluation of our 

approach (3.6). These sections follow the article [ACG+20]. 

3.1 Background 

Recommender Systems (RSs) are software tools and techniques that suggest items considered 

relevant for a particular user. “Item” is the prevalent word to refer to what the system 

recommends, e.g., the products to buy on an online retail store, or the songs to listen on a music 

streaming service provider platform. These systems support individuals to evaluate an 

overwhelming amount of item options [RRS15]. For this purpose, they may exploit item 

characterizations based on a range of item features (e.g., the genre in a movie recommender) 

[AT05]. 

RSs can be classified into the following broad categories based on how the recommendations 

are made: content-based filtering, where users are recommended items similar to the ones they 

preferred before; collaborative filtering, where users are recommended items that other people 

with similar preferences like; and hybrid filtering, which combines the previous two techniques 

to avoid the limitations of the content-based and collaborative methods [AT05]. Another way to 

classify RSs is based on the recommendation output. This can be either an estimation of user 

preference values (usually expressed in the form of numeric ratings) for items, or the 

generation of an ordered (ranked) list of the most relevant items for the target user. To measure 

the RS performance, there are different metrics for each of these types of approaches. Some 

metrics are based on the rating prediction error (e.g., MAE, RMSE), and others measure the 

item ranking quality (e.g., precision, recall, nDCG, MRR) [GS15]. 

Software development environments are starting to integrate RSs to assist developers in various 

software engineering activities, from reusing code to effective bug reports [RMW+14]. 

Examples of recommended items in these systems are method calls that can be useful in a 

certain context [TKO+05], software components that may be reused in a given situation 

[MCK05], and required software artefacts [MS10]. 

3.2 Proposed approach 

The architecture of the proposed approach is shown in Figure 8. In the proposal we apply MDE 

techniques to develop RSs. In label 1, the recommender system designer provides a meta-

model of the notation that will be the subject of the recommendation.  
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Figure 8: Overview of the proposed approach to define task-specific RSs 

As a running example, a meta-model of class diagrams is used. Also, we assume the existence 

of a repository of models conformant to the metamodel, which will be used in label 2 for the 

recommendation. Afterwards, the RS designer with the use of a textual DSL (label 3) defines 

the RS configuration. Such configuration needs to define which of the meta-model elements 

will play the roles of user, item and item features, as in traditional RSs. The DSL also permits 

customising other aspects of the RS, such as the maximum number of recommended items, the 

applied recommendation method, and the recommendation format that best fits for the task at 

hand. 

Using this information, the framework will generate a tailored RS available as a plug-in for the 

LCDP (label 4). The recommendations will be offered to the citizen developers within the 

environment in label 5. In this context, the citizen developers are the users of the LCDPs, 

which typically lack background in programming. Hence, it is important that LCDPs are able to 

integrate useful, easy-to-use mechanisms to assist these users in their development tasks. We 

foresee the provision of alternative ways to render the recommendations, such as tips over the 

diagram elements, example fragments, or by means of query-answer chatbots addressed in 

natural language.  

Figure 9 includes an overview of the RS configuration process. In the first step, the RS designer 

needs to provide some data, specifically, the meta-model of the notation for which the RS is to 

be developed, and the set of instance models to be used for training the RS. In step 2, the RS 

designer uses the DSL to configure the desired features of the RS. From this information, the 
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RS designer can trigger the generation of the RS. This generation comprises steps 3 to 7, which 

are completely automated. 

 

Figure 9: Overview of the process 

In step 3, the data provided in step 1 are prepared to produce the user-item and item-feature 

matrices, considering the specific items and features indicated in the RS configuration. Then, 

the data are split into two sets (step 4): one is used for training the RS (step 5), and the other 

one is used for evaluating the accuracy of the RS after its training (step 6). Finally, in step 7, 

the resulting RS can be deployed and used to obtain lists of recommended items.  

In the following subsections, we provide additional details of the DSL, the data preparation step 

and the recommendation engine. 

3.3 Domain-specific language for configuring the RS 

We have designed a DSL to offer a flexible configuration of the RS for arbitrary languages that 

are defined by a meta-model. The DSL allows configuring the recommendation method, the 

data splitting method, the evaluation method, and the kind of elements to be recommended. The 

DSL provides a high level syntax for this task, which avoids the RS designer's use of lower-

level general-purpose programming languages like C or Java (typically more technical and 

complex) or the need to have deep expertise in libraries for RSs.  

The meta-model that captures the main elements of the DSL is presented in Figure 10. The 

main class of the DSL is the RecommenderConfiguration class. This class contains the other 

classes, and allows the specification of the name of the recommender, the meta-model of the 

notation for which the RS is being defined, and a set of instance models conformant to this 

meta-model. The instance models will be used to train (build) the recommender. 

The RecommendationMethod class permits selecting the recommendation methods of interest 

(e.g., item popularity, collaborative filtering, content-based) and configuring their parameters 

(e.g., the neighbourhood size for collaborative filtering methods). The SplitMethod class allows 

customising how to split the set of provided instance models for training and testing the RS. In 

particular, it defines the split type (e.g., cross-validation, random), the number of folds (if 

needed), the splitting method (per-user or per-item), and the percentage of data used for 

training the RS (the rest of the data will be automatically assigned for testing). The 

EvaluationMethod class defines all the configuration related to the evaluation of the RS, 

namely, the metrics used to evaluate the RS (e.g., precision, recall, F1), the maximum number 

of recommended items and the relevance threshold to consider in the evaluation. The 

EvaluationResult class represents the values of the evaluation metrics after executing each 

selected recommendation method. DomainClass allows specifying the type of the model 

elements that will play the role of user in the context of the RS. Likewise, DomainProperty is 

used to specify the type of the items to be recommended, which can be either features 

(attributes or references) of the specified DomainClass or derived features via expressions.  
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Figure 10: Meta-model of the DSL for RS con. 

Listing 3 illustrates the textual concrete syntax that we have devised for the DSL. The listing 

configures the RS for our running example. For clarity, we assume our RS is to be developed 

for simple class diagrams, conforming to the simple meta-model shown in Figure 11. This 

meta-model allows the specification of ClassDeclarations, AttributeDeclarations and 

MethodDeclarations. 

 

Figure 11: Simple meta-model for class diagrams. 
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Listing 3: Example of recommender system configuration 

In Listing 3, lines 1–2 identify the meta-model of the language the RS is built for (cf. Figure 8), 

and the URL of a repository of instances of this meta-model (step 1 in Figure 9).  

The following lines configure the RS (step 2 in Figure 9). Lines 5–6 specify the meta-model 

elements that will play the roles of users and items in the RS. These elements must belong to 

the meta-model provided in line 1. The listing sets the class ClassDeclaration as the User of 

the RS, while its attributes, methods and superclasses are set as the Items of ClassDeclaration. 

This means that the RS will be able to recommend these three kinds of items for a given class. 

Then, lines 9–18 define the primary key used to identify each user and item in the RS, as well 

as the features used for comparing this information for the item AttributeDeclaration. In 

particular, its attribute attrName will be used as its primary key, and the features attrName and 

attrType will be used for the comparison of attribute declarations.  

The remainder of the listing declares recommender preferences. The Split fragment (lines 23–

27) configures the application of the cross-validation split method type with 10 folds, following 

a per user technique, and using 80% of the input data as training data. The Methods fragment 

(lines 30–33) selects the recommendation methods to apply and evaluate. Among others, the 

DSL designer has selected some collaborative filtering methods such as pop (item popularity) 

and cfub (collaborative filtering user base with 2, 3, 5 and 10 neighbours). Section 3.5 will 

describe these methods. Finally, the Evaluation fragment (lines 36–39) selects the evaluation 

protocol. In particular, line 37 chooses the metrics to be used for the evaluation, line 38 

specifies the number of items to recommend, and line 39 defines a relevance threshold. 
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3.4 Data preparation 

The step 3 of Figure 9, data preparation, is presented in this section. After the RS has been 

configured using the DSL the first step that our framework performs is preparing the data for 

building and evaluating the RS. 

Figure 12 shows the steps followed. First, the framework retrieves the collection of models 

specified with the DSL (1). Then, it extracts the model objects corresponding to the configured 

types of users, items and item features (2). Lastly, it generates a user-item matrix and an item-

feature matrix for them (3). The user-item (resp. item-feature) matrix contains the users (resp. 

items) as rows and the items (resp.features) as columns. Then, each cell is set to 1 if the user 

(resp. item) has the item (resp. feature), and to 0 otherwise.  

 

Figure 12: Data preparation steps. 

Figure 13 shows an example of data preparation for the running example. To ease 

understanding, we assume that there is a single class diagram with three classes (1). The table 

with label 2 shows the extracted users, i.e., the three classes. The table with label 3 shows the 

extracted items, i.e., each different attribute and method declaration. The item comparison is 

based on the features selected in Listing 3 (e.g., attrName and attrType for attributes). The table 

with label 4 shows the value of those item features. From this information, the framework 

builds the user-item matrix shown to the right (5), where each row represents a class, and each 

column represents an attribute, method or superclass. The figure also shows the generated item-

feature matrix (6). 

 

Figure 13: Example of data preparation. 
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3.5 Recommendation engine 

The steps 4 to 7 of Figure 9; data splitting, the RS creation and training, the RS evaluation, and 

the RS deployment; are presented in this section. The matrices generated in the previous step 

(data preparation) are the inputs to build the RS. The steps followed are depicted in Figure 14. 

 

Figure 14: Steps to build the recommendation engine. 

Our framework splits the provided data into two sets: one for training the RS, and the other to 

evaluate the quality of the resulting system (2) (step 4 in Figure 9). The splitting is made 

according to the specified protocol (see lines 23–27 in Listing 3). Next, the framework uses the 

configured recommendation methods (3) to train the RS with the training set (4) (step 5 in 

Figure 9). The RS designer may have configured several methods, as in lines 30–33 in Listing 

3, and hence, several candidate RSs may be generated. Then, the test set is applied to each 

candidate system, and a score is computed based on the obtained results in each case (5). 

Finally, each candidate RS is evaluated (step 6 in Figure 9) according to the specified metrics 

(6, see lines 36–39 in Listing 3), and the results are made available for the designer inspection. 

In the long term, we envision an intelligent framework that is able to suggest the best 

configuration for the target recommendation task and the available data (step 7 in Figure 9). 

This would free the RS designer from having to possess deep expertise in RS techniques. 

3.6 Evaluation 

As a proof of concept and to evaluate our framework we have designed an experiment. In this 

section we present the initial results of our envisioned framework. The framework presented is 

being developed using Java and the Eclipse Modeling Framework (EMF) [EMF20].  

The framework presented in this evaluation is applicable to languages defined by an Ecore 

meta-model. For the moment, we have automated support for data preparation, data splitting, 

RS training and RS evaluation. The configuration data must be provided programmatically 

though, as the configuration DSL, while designed, is still under development. The deployment 

of the generated RS in an LCDP is also future work.  

To have an initial assessment of our framework, we have applied it to the construction of the 

RS using Listing 3 as a running example. The RS would be integrated into an LCDP and would 

suggest attributes, methods and superclasses that may be added to new classes, based on the 

definition of other similar classes. By means of this experiment, we aim to answer the 

following research questions.  
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● RQ1 Can a recommender system help in class modelling tasks? 

● RQ2 Which recommendation method of relevant attributes, methods and superclasses 

has the best performance? 

● RQ3 Can hybrid approaches be beneficial for the recommendation of attributes, 

methods and superclasses? 

● RQ4 Which method performs better when considering user and item coverage in the 

recommendation of relevant attributes, methods and superclasses? 

We run the experiment on three datasets. Table 5 shows some size metrics of them (number of 

models, users, items and item features). The Synthetic dataset contains 29 models conformant 

to the running example meta-model (cf. Figure 4). The models were created manually using 

EMF [EMF20]. These models are based on class diagram examples from the internet.We have 

made sure that the models created have all the characteristics normally present on class 

diagrams, such as attributes, methods and inheritance hierarchies. 

Table 5: Description of the datasets. 

 

The SyntheticExtended dataset extends the first one with further models which are similar to 

those in the Synthetic dataset but substituting the name of some model elements by synonyms. 

Finally, since meta-models are similar to class diagrams, our third dataset (AtlanEcore) is 

composed of 300 Ecore meta-models from the AtlanEcore Zoo (https://web.imt-atlantique.fr/x-

info/atlanmod/index.php?title=Ecore). This is an open-source repository of Ecore meta-models, 

which are conformant to the Ecore.ecore meta-metamodel. With this last dataset, we want to 

validate the versatility of our proposal. The configuration of the RS for the first two datasets 

was the one shown in Listing 3. The configuration for the AtlanEcore dataset was similar but 

using types from Ecore.ecore (i.e., setting EClass as the user of the RS; eAttributes, 

eOperations and eSuperTypes as the items; and so on).  

As data splitting methodology we used 10-fold cross-validation with 80% of the data as a 

training set, and the remainder 20% as a test set (cf. lines 23–27 in Listing 3). We followed a 

per-user method, whereby the training and test sets are built per available user (i.e., for each 

class, it takes 80% of its items for training and the rest for testing). Using 10-fold cross-

validation avoids over-specialization. This is so as the training set is split into 10 subsets, the 

training is performed 10 times taking one of the subsets for testing and the others for training, 

and finally, the average performance of the 10 learned RSs is reported.  

For the recommendations methods, we trained the RS using a variety of collaborative, content-

based, and hybrid recommendation methods (cf. lines 30–33 in Listing 3). For reproducibility, 

we used the RankSys framework (https://github.com/RankSys/RankSys) to implement the 

methods. The recommendation consisted of the top 5 highest-rated items. In particular, the 

collaborative methods will recommend to users (i.e., to classes) items (i.e., attributes, methods, 

superclasses) that were rated (i.e., used) by like-minded users. The similarity between users and 

items is based on rating patterns.  

https://web.imt-atlantique.fr/x-info/atlanmod/index.php?title=Ecore
https://web.imt-atlantique.fr/x-info/atlanmod/index.php?title=Ecore
https://github.com/RankSys/RankSys
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In the experiment,we evaluated both user-based and item-based k-nearest neighbour (k-NN) 

heuristics. The item-based approach (cfib) creates neighbourhoods by exploiting the rating-

based similarities between items, and the user-based approach (cfub) computes similarities 

between users. We have used the cosine as a similarity metric. We tested neighbourhoods of 

size k = 2, 3, 5, 10. To refer to a specific instance of a method, we concatenate the value of k to 

its name. For instance, cfub3 refers to collaborative user-based k-NN size k = 3. As a baseline, 

we also evaluated the item popularity method (pop). The content-based method (cb) will 

recommend to users (i.e., to classes) items (i.e., attributes, methods, superclasses) similar to the 

ones liked (i.e., used) by the user. In this case, the similarity is computed based on profiles built 

from textual information.  

The item features correspond to text features extracted from the items, and the 

recommendations are based on similarities in the text feature space. In the experiment, we used 

the name and data type as features of attribute declarations; the name and return type as 

features of method declarations; and the name of superclasses. Finally, the hybrid methods 

exploit both rating and text features by combining content-based and collaborative methods. 

We considered the methods cbub and cbib, which combine either user-based (cfub) or item-

based (cfib) collaborative filtering with content-based similarity (cb). We tested 

neighbourhoods of size k = 2, 3, 5, 10. As before, we concatenate the name of the method and 

the value of k. For instance, cbub5 refers to content-based user-based k-NN size k = 5.   

We analysed the performance of the resulting RSs using some ranking-based, coverage and 

diversity metrics typically used in RSs (cf. lines 36–39 of Listing 3). The metrics were 

implemented in the RiVaL framework (https://github.com/recommenders/rival). The selection 

of metrics depends on the faced recommendation problem. In particular, since our RS should 

provide an ordered list of recommended items, we used the classical ranking metrics precision, 

recall and F1. Precision is the percentage of the recommended items that are relevant; recall is 

the percentage of relevant items included in the recommendation list; F1 is a harmonic means 

of precision and recall. To measure coverage, we used the metrics USC (User Space Coverage) 

and ISC (Item Space Coverage). USC measures the percentage of users that the RS can 

recommend, and ISC the diversity in terms of the popularity of what is recommended. Finally, 

to measure the quality of the recommended list, which should contain just the most relevant 

items, we used the metric nDCG (Normalized Discounted Cumulative Gain). This metric 

penalises when the most relevant items are not at the top of the list.  

Table 6: Results of the experiment. The best values are shown in bold. 

 

https://github.com/recommenders/rival
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The results of the experiment are presented in Table 6. The rows contain the recommendation 

methods used to train the RS, and the columns show their performance metrics. We can see that 

the metric values are drastically different depending on the dataset. The AtlanEcore dataset has 

the best overall performance. This is a common situation, which is due to differences on the 

dataset sizes and user preference sparsity levels among the three. Hence, to evaluate the distinct 

recommendation methods, relative metric value differences should be considered for each 

particular dataset. 

In the following we answer our research questions.  

● RQ1 Can a recommender system help in class modelling tasks? In order to answer this 

question, we analyse the performance of the recommendation methods. Specifically, we 

look at their precision, recall and F1 values in Table 6, as they give a measure of the 

ranking quality. With regards to our evaluation methodology, where the task is 

recommending the most relevant items in the test set, the obtained performance is 

relevant according to the literature [HHL+19],[NDD+19],[RRS15],[SGM17]. In the 

AtlanEcore dataset, the highest F1 value was 0.289 for the cfub2 method. This shows 

that we can build an RS that helps in class modelling by recommending valuable 

attributes, methods and superclasses for a given class.  

● RQ2 Which recommendation method of relevant attributes, methods and superclasses 

has the best performance? In the SyntheticExtended and AtlanEcore datasets, the 

collaborative filtering methods obtained the best performance. In particular, cfub2 has 

the best results, as the F1 measure is 0.135 and 0.289 for the SyntheticExtended and 

AtlanEcore datasets, respectively. Conversely, among the collaborative methods, the 

baseline pop has the worst performance (e.g., 0.018 precision and 0.083 recall on the 

AtlanEcore dataset). When it comes to coverage, pop has a very high USC value 

(1.000), as it recommends the most popular items to all users. However, it possesses a 

low ISC (0.002), which suggests a very low diversity. As for the Synthetic dataset, the 

best result was obtained for the hybrid method cbib2, followed by all other collaborative 

methods. 

● RQ3 Can hybrid approaches be beneficial for the recommendation of attributes, 

methods and superclasses? When analysing the hybrid methods applied in this 

experiment, we observe that some performed very well. For instance, in the Synthetic 

dataset, cbib2 performed even better than the collaborative methods, obtaining 0.095 

precision, 0.199 recall, and an F1 value of 0.129. 

● RQ4 Which method performs better when considering user and item coverage in the 

recommendation of relevant attributes, methods and superclasses? We observe a 

compromise between the coverage metrics USC and ISC, and the ranking-based 

metrics. The methods with low precision and recall, like most of the hybrid ones, report 

high user coverage and low item coverage. A good user coverage comes at the cost of 

losing item diversity when compared to collaborative methods. 
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4. Summary, conclusions and further developments 

In this document, we have described the initial design and prototypes for a system supporting 

the development of web-based graphical editors supporting scalable modelling, heterogeneity 

and recommendation. For this purpose, we have proposed an approach that follows software 

language engineering principles [BCW17], separating the definition of the abstract syntax, 

concrete syntax, scalability features and heterogeneity support. We have proposed an initial 

prototype specially targeting migration of existing editors to the web. For the recommender, we 

have proposed a DSL to configure the recommender system to arbitrary DSLs defined by a 

meta-model. We have performed an initial evaluation showing good results.  

In relation to ESR2’s work, we are currently working on providing support to migrate models 

(not only editors), and also from other popular frameworks for DSL definition, like Sirius. We 

also plan to work on the definition of modelling scalability features, including views and 

abstraction patterns able to summarize a large graph into a smaller one (e.g., aggregating 

parallel or sequential nodes) that is provided with a hierarchical visualization structure. As 

mentioned in Section 2.2, we also plan to include support for specifying how the models of 

heterogeneous DSLs can be connected, related and navigated. 

In relation to ESR1’s work, currently, the DSL works under Xtext within Eclipse, but we plan 

to migrate it to the web. We plan to apply our framework to more languages and modelling 

tasks. Moreover, we plan to provide support for deploying the synthesised recommenders in the 

LCDPs. Specifically, we foresee the provision of a chatbot -- integrated within the LCDP -- 

that citizen developers can address to access the recommendations.  
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