
 “This project has received funding from the European Union’s Horizon 2020

research and innovation programme under the Marie Skłodowska-Curie

grant agreement No 813884”.

1

Project Number: 813884

Project Acronym: Lowcomote

Project title: Training the Next Generation of Experts in Scalable Low-Code Engineering

Platforms

D3.1. Cloud-Based Low-Code Engineering Editor - Interim Version

Project GA: 813884

Project Acronym: Lowcomote

Project website: https://www.lowcomote.eu/

Project officer: Dora Horvath

Work Package: WP3

Deliverable number: D3.1

Production date: November 16th 2020

Contractual date of delivery: November 30th 2020

Actual date of delivery: November 30th 2020

Dissemination level: Public

Lead beneficiary: Universidad Autónoma de Madrid

Authors: Lissette Almonte, Juan de Lara, Fatima Rani

Contributors: The Lowcomote partners

https://www.lowcomote.eu/

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
2

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
3

HISTORY OF CHANGES

Version Publication date Change

1.0 November 16th 2020 ▪ Initial version

1.1 November 25
th

 2020 ▪ Revised version

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
4

Project Abstract

Low-code development platforms (LCPD) are software development platforms on the Cloud,

provided through a Platform-as-a-Service model, which allows users to build completely

operational applications by interacting through dynamic graphical user interfaces, visual

diagrams and declarative languages. They address the needs of non-programmers (so called

citizen developers) to develop personalised software, and focus on their domain expertise

instead of implementation requirements.

Lowcomote will train a generation of experts that will upgrade the current trend of LCPDs to a

new paradigm, Low-code Engineering Platforms (LCEPs). Our envisioned LCEPs will be:

● open, allowing to integrate heterogeneous engineering tools;

● interoperable, allowing for cross-platform engineering;

● scalable, supporting very large engineering models and social networks of developers,

and

● smart, simplifying the development for citizen developers by machine learning and

recommendation techniques.

This vision will be achieved by injecting in LCDPs the theoretical and technical framework

defined by recent research in Model Driven Engineering (MDE), augmented with Cloud

Computing and Machine Learning techniques. This is possible today thanks to recent

breakthroughs in scalability of MDE performed in the EC FP7 research project MONDO, led

by Lowcomote partners.

The 48-month Lowcomote project will train the first European generation of skilled

professionals in LCEPs. The 15 future scientists will benefit from an original training and

research programme merging competencies and knowledge from 5 highly recognised academic

institutions and 9 large and small industries of several domains. Co-supervision from both

sectors is a promising process to facilitate agility of our future professionals between the

academic and industrial world.

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
5

Executive Summary

This document describes the design and early prototype of a cloud-based, low-code engineering

editor, with unified support of heterogeneous technologies. The document also describes the

design of a system to facilitate the construction of backends for recommender systems, which

can be integrated with editors for domain-specific languages. In further deliverables (D3.3),

these two parts will be integrated, including a front-end based on natural language to access the

recommendation.

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
6

Table of contents

1. Introduction 7

2. Cloud-Based Domain-specific Graphical Modelling Environments 8

2.1 Web-based graphical modelling environments: state of the art 8

2.2 Lowcomotive approach to DSL definition 10

2.3. Proof-of concept approach: enabling migration of editors to the web 11

2.3.1 Eclipse Modeling Framework and EuGENia 12

2.3.2 DPG (Diagram Programming Generator) 13

2.3.3 Architecture and Tool Support 14

2.3.3.1 Migrating the abstract syntax 14

2.3.3.2 Migrating the concrete syntax 14

2.3.4 Tool Support 17

2.3.5 Evaluation 17

3. Recommendation support for modelling environments 19

3.1 Background 19

3.2 Proposed approach 19

3.3 Domain-specific language for configuring the RS 21

3.4 Data preparation 24

3.5 Recommendation engine 25

3.6 Evaluation 25

4. Summary, conclusions and further developments 29

5. References 30

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
7

1. Introduction

The present document is a deliverable of the Lowcomote project (Grant Agreement n°813884),

funded by the European Commission Research Executive Agency (REA), under the Innovative

Training Networks Programme of the Marie Sklodowska Curie Actions (H2020-MSCA-ITN-

2018). The purpose of this document is to provide an overview of the design decisions and first

prototypes for a cloud-based low-code engineering editor, with unified support for

heterogeneous technologies, and for customized recommendations.

Figure 1 shows a high-level structure of the architecture. Both the graphical editor and the

recommender systems will be the front-ends of the envisioned LCEP, called Lowcomotive.

Both components can be tailored to specific domains – since the goal is that they can be reused

to create LCEP in arbitrary domains – and be deployed on a cloud infrastructure. Such

components need to interact with the model repository (designed in WP4). The graphical editor

is the focus of the work of ESR2, while the recommender is the focus of ESR1. Both

components will be analysed in the next two sections.

Figure 1.: High-level overview of the architecture

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
8

2. Cloud-Based Domain-specific Graphical Modelling Environments

As the project proposal mentions, LCDPs allow describing different aspects of an application

using graphical models. However, when the targeted application is complex or encompasses

many concepts, their models become large and, without appropriate tool support, they get

difficult to create, reuse, navigate, and comprehend. Hence, mechanisms to make modelling

more scalable are needed.

There are a few domain-specific modelling frameworks for web-based editing, but creating

web-based graphical editors with existing frameworks is still hard and time-consuming due to

their low-level code nature. Moreover, the created editors are not scalable beyond tens of

elements, are tied to a modelling technology, do not enable rich modelling of editor aspects

(e.g., domain-specific abstractions), or do not connect different languages through views.

To alleviate these problems, the Lowcomote project proposes a novel approach to ease the

creation of multi-view graphical editors for the Cloud. Instead of relying on low-level

JavaScript graphical frameworks, our proposal is founded on language engineering principles.

This way, all aspects of the editor (abstract and concrete syntax, user interaction, view

definitions and applicable abstractions) will be described through models. The graphical front-

ends will be decoupled from the back-end modelling technology, to enable heterogeneous

cross-modelling solutions e.g. based on Eclipse EMF, JSON, Ontologies or proprietary

knowledge-based representations like the one supported by UGROUND’s ROSE [DNF+20].

To enable more scalable modelling, the approach will provide extensible libraries of model

abstractions and graph summarization techniques, to support creating more succinct model

views. A Cloud-based modelling environment will be ideal for this purpose, to provide enough

computation power to perform complex abstractions (enabling better model comprehension and

navigation) over large models.

Another goal is being able to profit from existing editors built for e.g., the Eclipse ecosystem.

This way, automated migration from such desktop scenarios into a web editor would be

desirable, to enable their integration with LCEPs.

In the rest of this section, we first provide an state-of-the-art revision of some of the current

main frameworks and approaches, and then report on the approach we have taken (partly based

on [RDC+20]).

2.1 Web-based graphical modelling environments: state of the art

Environments to automate the development of graphical DSLs (DSLs) have existed since the

end of the 90s. Tools like KOGGE [EWD+96], DOME [BGS+10], GME [LMK+02], Diagen

[M02], MetaEdit+ [KT08] or AToM
3
 [dLV02], have laid the foundations of some of the tools

in use today.

The second wave of tools for graphical DSL definition started with the emergence of model-

driven engineering approaches to software development [BCW17], and especially with the

popularization of the Eclipse framework. This lead to a plethora of tools targeting the

generation of editors for this environment, like Tiger [BEE+08], the Graphical Modelling

Framework (GMF) [GMF20] which is based on the Eclipse Graphical Editing Framework

(GEF) [GEF20], EuGENia [KGR+17], Spray [GB16], Graphiti [Gra20], and Sirius [Sir20].

Graphical DSLs also play a fundamental role in LCDEs. However, because LCDEs are based

on cloud infrastructure, therefore require web-based editors. Hence, there is a third wave of

tools for automating the creation of web-based graphical editors, which are the most interesting

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
9

for our project, since they can be integrated into LCEP. We review next the most representative

ones. Please note that we focus on high level frameworks for their creation (i.e., based on

software language engineering principles) and not on low-level frameworks based on

JavaScript libraries, since we want to compare editor features.

WebGME [MKK+14] is a web-based evolution of the GME [LMK+02] environment.

WebGME is a tool to create graphical DSLs directly in the browser. It is based on software

language engineering principles, using a UML class diagram-based meta-models to specify the

modelling concepts, relationships and attributes. It also supports model versioning and

collaboration on the cloud.

AToMPM [SVM+13] is a web version of AToM
3
 [dLV02]. It allows defining graphical DSL

editors that run on the web, and to specify DSL semantics using graph transformations

[KEP+06]. It supports two types of collaboration mechanisms in real-time. On the one hand,

screenshare allows two or more clients to share exactly the same drawing area: any

modification made to a model (abstract or concrete syntax) is replicated on all observing

clients. On the other, modelshare only shares the abstract syntax of a model between clients.

Eclipse Theia [The20] is an open-source IDE platform that runs in browsers and on desktops.

Theia provides three main elements: First, a customizable “workbench” supporting view,

editors, menus, toolbars, etc. This provides the frame to embed modelling-related features, such

as graphical editors, code generators and so on. Second, a flexible extension mechanism to add

custom features, but also to reuse existing modules provided by frameworks. Third, based on

this extension mechanism, the tool makes available a collection of reusable generic features,

such as Git integration, a file explorer or a search feature.

Sprotty [Spr20] is an Eclipse project that enables adding diagrams to web applications with

little effort. It is a framework -- at much lower level than tools such as AToMPM or WebGME

-- based on SVG for rendering and CSS for styling. However, we review it here, since it has

been integrated with Eclipse Theia to provide support for diagrammatic views. Sprotty's

reactive architecture makes possible to distribute the execution of a diagram arbitrarily between

a client and a server, which matches the scenario of the Language Server Protocol (LSP, see

below).

EMF.cloud [EC20] is a project – still under development – aiming at making EMF-based

technologies accessible via the cloud, including graphical editors, based on Eclipse Theia. Its

central component is the model server, which provides a set of APIs to connect model clients to

model instances (similar to EMF-Rest [ECG+16]). However, it additionally enables

synchronization of changes and command-based modifications across multiple modelling

editors that may run in parallel on a client. It also allows retrieving model instances in different

formats, e.g. as JSON. This is enabled by another sub-component of EMF.cloud, the EMF to

JSON converter. Basically, the model server is like a ResourceSet with an EditingDomain for a

client-server scenario. Based on the model server and the Graphical Language Server Protocol

(GLSP) [RCW+18], EMF.cloud hosts a browser-based version of the Ecore tools based on

Eclipse Theia allowing creating Ecore models in the browser. This also includes a tree-based

form editor similarly to what we can generate with EMF.

GLSP [RCW+18]. The Graphical Language Server Platform (GLSP) is a framework for

building web-based diagram editors, running in the browser. The concept of GLSP is based on

the Language Server Protocol (LSP), which is the de-facto standard for implementing textual

code editors on the web [LSP20]. The general idea is to cleanly encapsulate the client and the

server part of an editor via a defined protocol. The client is responsible for rendering and for

executing time-critical operations such as drag and drop. The server is responsible for

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
10

providing any domain-specific business logic, e.g. what shapes to display, how they can be

connected and how the domain model is updated on creating a node.

The diagram client of GLSP is largely generic, which means it can be re-used for custom

diagram type by adding custom shapes if needed. To create a custom diagram for a domain-

specific language, we need to create a custom “graphical language server”. Similarly to LSP, a

GLSP server can be written in any language, since the communication to the client is

encapsulated in a defined protocol. This gives the user freedom of choice for new projects and,

even more importantly, it allows to adapt any existing code in the user language server. For

instance, it can connect any diagram logic that is already implemented in any language for the

desktop.

To sum up, GLSP provides two high-level benefits. First, the architectural frame, i.e. the strong

encapsulation, allows to build flexible solutions and also reuse existing business logic on the

web. Second, GLSP provides ready-to-use components for the creation of web-based diagram

editors, i.e. an adaptable and powerful diagram client, the communication protocol and a server

framework to create custom domain-specific language servers.

EuGENia Live [RKP12] is a web-based tool for designing graphical DSLs. It encourages the

construction and collaboration of models and meta-models in iterative and incremental

development. The tool supports starting from a meta-model of the DSL, and then modify it

based on examples. As a final result, EuGENIA live generates a GMF Eclipse based graphical

modelling environment.

Altogether, we have analysed several tools to create graphical editors for the web. However, we

are not aware of solutions supporting migration of existing editors to the web, to enable their

integration with low-code development platforms.

2.2 Lowcomotive approach to DSL definition

Domain-Specific Languages (DSLs) are defined in terms of their abstract syntax (the primitives

they support, their properties and their relations), concrete syntax (how the DSL is visualized,

typically graphically or using text), and semantics (how the DSL is executed) [BCW17]. In

model-driven development approaches, all these three parts are defined using models.

Our proposal for the Lowcomotive engine in the project is to follow such standard separation of

concerns, as Figure 2 shows. Please note that this WP is only concerned with the DSL syntax,

while its execution semantics is dealt with in WP5.

Figure 2.: Lowcomotive approach and architecture for defining DSLs for LCEPs

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
11

This way, the abstract syntax of the DSL will be defined via a meta-model [BCW17], typically

a class diagram describing the elements of the language, their properties, relations and integrity

constraints. We will consider graphical concrete syntaxes, which are given in reference (e.g., as

annotations) to the abstract syntax model. Then, the approach will specify elements to enhance

the DSL scalability, like views [BMD+20] (to display different concerns of a model in different

diagrams), or abstraction patterns [JGL17][dLGS13] (to summarize parts of a model into a

more abstract representation, which can be explored using hierarchical decomposition).

Finally, to cope with heterogeneity, we will provide a specification of how the DSLs can be

connected to each other. For this purpose we plan on interfaces enabling different types of

connections between DSLs:

● Open: From specific elements in the DSL to any element in any DSL

● Restricted: From elements in the DSL to concrete elements in other specific DSLs

Moreover, connections can be realized using different styles: using views (the connected model

is displayed in a different view), or embedded (the connected model elements are displayed on

the same diagram view).

The project goal is to enable this DSL definition both using web editors (from LCEPs) and

from other means, like the Eclipse ecosystem, to enable migration of existing editors to the web

for their integration into LCEPs.

2.3. Proof-of concept approach: enabling migration of editors to the web

We have performed a proof-of-concept preliminary prototype of the proposed architecture as

shown in Figure 3. In this prototype, the abstract syntax is defined using the Eclipse Modelling

Framework (EMF) [SBP+08], and the concrete syntax is defined using Eugenia [KGR+17].

This is an interesting scenario that enables migration of editors already created for the

EMF/Eclipse ecosystem into the web. For the target, we use DPG/PSI, a JavaScript-based

framework developed by UGROUND for diagramming in their LCEP ROSE [CJD17]. In this

first prototype, we do not support the specification of scalable features and heterogeneity

support.

Figure 3.: Proof-of-concept approach to migrate DSLs to the web

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
12

In the following sections, we first provide more details on EMF and EuGENIA, describe the

architecture and tool support, and a preliminary evaluation. These sections are based on our

publication [RDC+20].

2.3.1 Eclipse Modeling Framework and EuGENia

The Eclipse Modeling Framework (EMF) is a widely used (partial) implementation of the

meta-object facility (MOF) standard of the OMG [MOF16]. EMF is a meta-modelling

framework integrated within Eclipse. It supports a notation (Ecore) for creating meta-models,

and a code generation facility that produces Java code (enabling the construction of models and

model transformations programmatically) and tree editors to create models interactively. EMF

supports model serialization using the XML Metadata Interchange (XMI), an OMG standard

for meta-data exchange.

As an example, assume we would like to create a modelling editor for Petri nets using EMF.

Petri nets are a popular formalism to model concurrent systems, made of places, which may

hold zero or more tokens, and that can be connected to transitions via input and output arcs.

Figure 4 shows the Ecore meta-model of Petri nets with EuGENia annotations. The meta-model

supports Petri nets with weighted arcs (attribute tokenNo in ArcPT and ArcTP) and time in

transitions to model delays. By convention, most Ecore meta-models have a root class, which

contains directly or indirectly all other classes via composition relations. This way, each class –

except the root class – is contained into another one. This is especially useful to edit models

using the generated tree editors since the instances of the contained classes appear as children

of the container ones.

Figure 4: Ecore meta-model for Petri nets with EuGENia annotations

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
13

While EMF generates a tree editor by default, more user-friendly editors are typically required.

They are normally either textual or graphical. Here, we focus on graphical DSLs. There are

several technologies to help in the construction of graphical editors within Eclipse, like

Graphiti, Sirius, GMF or EuGENia. We decided to support the latter technology due to its

popularity, since it is extensively used by both researchers and practitioners [CJD17]. EuGENia

simplifies the development of GMF-based graphical model editors by automatically generating

the required models needed by the GMF editor construction framework from a single annotated

Ecore meta-model.

Figure 5: EuGENia graphical editor for Petri nets

As an example, Figure 5 shows some annotations indicating that Places, Transitions and

Tokens are to be displayed as nodes (annotation gmf.node), while arcs are to be represented as

links (annotation gmf.link), and all elements are to be placed in the diagram represented by the

PetriNet (annotation gmf.diagram). Figure 5 shows the resulting editor. It contains a canvas to

graphically edit the model, and a palette to create the objects. The object attributes can be

changed from an Eclipse properties view.

2.3.2 DPG (Diagram Programming Generator)

The web technology that we target in this initial prototype is based on the Programmable

Solutions Interpreter Engine, (PsiEngine) [CJD17]. PsiEngine implements, evaluates, interprets

and executes DSLs described in XML within the web client. It uses HTML5, CSS3, JavaScript

and DOM together with technologies, services and tools from Web 2.0 and the specification of

XML-DSL grammars in order to build web components, widgets, and dynamic web sites to

give the solution to specific web application problems or parts of them.

PsiEngine is a generic lightweight JavaScript framework which is a cross-browser platform that

processes and evaluates programs written in Psi Language. On top of PsiEngine, a set of Psi

languages (Graph Library Psi GLPsi, Diagram Psi DPsi, Visual Tool Psi TPsi and Data Form

Psi DFPsi) were created to develop the functionality of a programmable diagram.

A programmable diagram is a set of graphical elements that define an SVG-based diagram, and

each graphical element can have associated visual tools (like dialogue boxes, toolbars, pop-ups,

floating menus, menus, and drag and drop), programming utilities (classes, scripts, functions,

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
14

and variables) and heterogeneous information data sources (XML/JSON) that determine their

appearance and content.

The Diagram Programming Generator (DPG) is a layer on top of the PsiEngine that encodes

DSLs as a JSON-based grammar, which specifies the elements necessary to create a

programmable diagram in PsiEngine. The execution engine that interprets a DPG specification,

is called DPG-PsiEngine. Its objective is to generate the code in the different Psi languages and

to start the programmable diagram. Additionally, in DPG-PsiEngine a template engine was

incorporated for the administration and generation of graphical elements and forms. It also

includes components for connection via REST API, to obtain JSON information. These

frameworks are used within UGROUND as a basis for the low-code solutions, and some

examples are available at http://devrho.com/.

2.3.3 Architecture and Tool Support
This section presents our migration approach, architecture and tool support. First, we describe

how the abstract syntax is migrated (Section 2.3.3.1), and then the graphical concrete syntax

(Section 2.3.3.2).

2.3.3.1 Migrating the abstract syntax

Our approach starts reading the domain meta-model and transforming the classes into the DSL-

JSON format of DPG. All the (non-abstract) classes in the EMF meta-model are placed inside a

DPG table called "Elements'': {...}. Then, inside such a table, they are placed into a key "Type":

{...}. Later, classes need to be classified as nodes or connectors, as we will explain in the next

section. All the attributes and references of the classes are stored into a key "Fields": {...}, and

then attributes are associated with different types of DPG controls depending on their eType, as

shown in Table 1. The source and target of references are specified using the JSON keys

"Start": and "End":.

Table 1: Mapping EMF types to DPG Controls

In EMF meta-models, we may have abstract classes and inheritance hierarchies. However,

neither abstract classes or inheritance are supported by DPG. To overcome this limitation, our

mapping flattens the inheritance hierarchy, collecting the attributes and references of upper

classes in the hierarchy, and replicating them in lower classes where they are required.

2.3.3.2 Migrating the concrete syntax

Our approach also translates EuGENia annotations to the DPG format, which distinguishes

nodes and connectors. Hence, we have to decide on the basis of EuGENia annotations which

classes or references of the EMF meta-model are going to become nodes, and which ones will

be connectors. In addition, we need to consider the different graphical styles configured in

these annotations.

http://devrho.com/

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
15

Listing 1: Node and Link annotations in EuGENia

An example of EuGENia annotations is shown in Listing 1. For the case of nodes, using key-

value pairs, the DSL designer can specify the attribute to be shown as label of the node (key

label), the figure representing the node (ellipse), the style of the figure border (border.styles),

the colours of the figure background, label and border (color, label.color, border.color) and the

border width (border.width).

Listing 2: DPG Code for nodes and connectors

For links attached to nodes, we need to define their source and target references (keys source

and target), and we can also specify a label for the link (label) and graphical styles including

colour, width, line style, and decorations for the source and targets of the link. Details on

additional EuGENia styles can be found at https://www.eclipse.org/epsilon/doc/eugenia/. In

DPG the graphical information is stored in JSON, where we need to define libraries of nodes

and connectors, as Listing 2 shows. Please note that DPG uses CSS styles, e.g., for colour

values.

https://www.eclipse.org/epsilon/doc/eugenia/

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
16

Table 2: Mappings between EuGENia and DPG for figures and decorations

The details of the mapping of different styles of nodes and links between EuGENia and DPG

are described in Tables 2 and 3. The former table details the mappings between figures and

decorations for links and the latter describes the mapping between the other annotation options.

In DPG, when attributes of nodes or links are to be edited, a dialogue box is presented. Each

attribute can be associated with a different control, depending on its eType, to properly edit its

value. Finally, the information about the palette and the corresponding icons are also translated.

Regarding the limitations of our translation, we do not currently support the EuGENia

annotation @gmf.affixed to attach nodes to the border of another one. In addition, the

@gmf.compartment annotation, which allows node nesting, is not natively supported either.

However, we provide a workaround that allows inserting elements in the container objects.

Table 3: Mapping EuGENia and DPG styles for nodes/links

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
17

2.3.4 Tool Support

We have created a tool called ROCCO (MigRatiOn towards Cloud Based GraphiCal EditOr)

that implements the previous mapping. ROCCO is an Eclipse plugin that reads Ecore meta-

models with EuGENia annotations and synthesises the necessary DPG files. For this purpose, it

uses the Acceleo code generation language. The architecture of the tool is shown in Figure 6,

which also shows the generation process.

Figure 6: Code Generation Template Schema

Figure 7 shows the resulting DPG editor for the running example. It can be seen how the

synthesized editor mimics well the original one defined with EuGENia (cf. Figure 5).

Figure 7: DPG-PsiEngine graphical editor for Petri nets

2.3.5 Evaluation

In this section, our goal is to answer the following research question: Can ROCCO migrate

Eclipse-based graphical modelling editors (EuGENia) to the web, to facilitate their integration

with low-code platforms?

For this purpose, we have evaluated our tool by migrating existing EuGENia editors into DPG-

PsiEngine. We have taken nine EuGENia editors from the Epsilon online repository (taking all

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
18

meta-models with EuGENia annotations) and checked whether a complete DPG editor is

obtained, required manual changes or had lacking functionality.

Table 4: Results of the evaluation

The evaluation results are shown in Table 4. The table shows the meta-model size in classes,

and the lines of code of the generated DPG specifications. Then, it shows the number of nodes,

links (applied to nodes and references), compartment and affixed annotations. We marked with

Yes/No whether the different annotations were correctly translated between these two

platforms. For containment, we used Yes*, since we emulate compartments as graphical areas

with less functionalities than in EuGENia. Overall, we could fully migrate eight out of the nine

editors. For the other one (components), we obtained a working editor, but with lacking

functionality regarding affixed features. In the EuGENia editor ports can be affixed to

components, to appear in their borders. Instead, they are connected via links in the DPG editor.

Overall, we can answer our research question in a positive way, since in all cases we obtained a

working editor, albeit with lacking functionality for affixed, and less sophistication for

compartments. These limitations will be addressed in future work.

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
19

3. Recommendation support for modelling environments

In parallel to the work presented in Section 2, and attached to the work of ESR1, we are

developing a generic model-driven framework capable of generating ad-hoc, task-oriented

recommender systems (RSs) to assist in the modelling tasks. The framework provides a DSL

where RSs designers can define the settings that they would like to have in the RS. Thus, the

DSL describes the different aspects of recommender systems, including a description of the

recommended items and their features, the profile and preferences of the users of the

recommendations, the recommendation methods, and the evaluation procedures and metrics.

The following sections contain background information related to recommender systems

(Section 3.1), the proposed approach (Section 3.2), the used domain-specific language (3.3), the

data preparation (3.4), the considered recommendation engines (3.5) and the evaluation of our

approach (3.6). These sections follow the article [ACG+20].

3.1 Background

Recommender Systems (RSs) are software tools and techniques that suggest items considered

relevant for a particular user. “Item” is the prevalent word to refer to what the system

recommends, e.g., the products to buy on an online retail store, or the songs to listen on a music

streaming service provider platform. These systems support individuals to evaluate an

overwhelming amount of item options [RRS15]. For this purpose, they may exploit item

characterizations based on a range of item features (e.g., the genre in a movie recommender)

[AT05].

RSs can be classified into the following broad categories based on how the recommendations

are made: content-based filtering, where users are recommended items similar to the ones they

preferred before; collaborative filtering, where users are recommended items that other people

with similar preferences like; and hybrid filtering, which combines the previous two techniques

to avoid the limitations of the content-based and collaborative methods [AT05]. Another way to

classify RSs is based on the recommendation output. This can be either an estimation of user

preference values (usually expressed in the form of numeric ratings) for items, or the

generation of an ordered (ranked) list of the most relevant items for the target user. To measure

the RS performance, there are different metrics for each of these types of approaches. Some

metrics are based on the rating prediction error (e.g., MAE, RMSE), and others measure the

item ranking quality (e.g., precision, recall, nDCG, MRR) [GS15].

Software development environments are starting to integrate RSs to assist developers in various

software engineering activities, from reusing code to effective bug reports [RMW+14].

Examples of recommended items in these systems are method calls that can be useful in a

certain context [TKO+05], software components that may be reused in a given situation

[MCK05], and required software artefacts [MS10].

3.2 Proposed approach

The architecture of the proposed approach is shown in Figure 8. In the proposal we apply MDE

techniques to develop RSs. In label 1, the recommender system designer provides a meta-

model of the notation that will be the subject of the recommendation.

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
20

Figure 8: Overview of the proposed approach to define task-specific RSs

As a running example, a meta-model of class diagrams is used. Also, we assume the existence

of a repository of models conformant to the metamodel, which will be used in label 2 for the

recommendation. Afterwards, the RS designer with the use of a textual DSL (label 3) defines

the RS configuration. Such configuration needs to define which of the meta-model elements

will play the roles of user, item and item features, as in traditional RSs. The DSL also permits

customising other aspects of the RS, such as the maximum number of recommended items, the

applied recommendation method, and the recommendation format that best fits for the task at

hand.

Using this information, the framework will generate a tailored RS available as a plug-in for the

LCDP (label 4). The recommendations will be offered to the citizen developers within the

environment in label 5. In this context, the citizen developers are the users of the LCDPs,

which typically lack background in programming. Hence, it is important that LCDPs are able to

integrate useful, easy-to-use mechanisms to assist these users in their development tasks. We

foresee the provision of alternative ways to render the recommendations, such as tips over the

diagram elements, example fragments, or by means of query-answer chatbots addressed in

natural language.

Figure 9 includes an overview of the RS configuration process. In the first step, the RS designer

needs to provide some data, specifically, the meta-model of the notation for which the RS is to

be developed, and the set of instance models to be used for training the RS. In step 2, the RS

designer uses the DSL to configure the desired features of the RS. From this information, the

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
21

RS designer can trigger the generation of the RS. This generation comprises steps 3 to 7, which

are completely automated.

Figure 9: Overview of the process

In step 3, the data provided in step 1 are prepared to produce the user-item and item-feature

matrices, considering the specific items and features indicated in the RS configuration. Then,

the data are split into two sets (step 4): one is used for training the RS (step 5), and the other

one is used for evaluating the accuracy of the RS after its training (step 6). Finally, in step 7,

the resulting RS can be deployed and used to obtain lists of recommended items.

In the following subsections, we provide additional details of the DSL, the data preparation step

and the recommendation engine.

3.3 Domain-specific language for configuring the RS

We have designed a DSL to offer a flexible configuration of the RS for arbitrary languages that

are defined by a meta-model. The DSL allows configuring the recommendation method, the

data splitting method, the evaluation method, and the kind of elements to be recommended. The

DSL provides a high level syntax for this task, which avoids the RS designer's use of lower-

level general-purpose programming languages like C or Java (typically more technical and

complex) or the need to have deep expertise in libraries for RSs.

The meta-model that captures the main elements of the DSL is presented in Figure 10. The

main class of the DSL is the RecommenderConfiguration class. This class contains the other

classes, and allows the specification of the name of the recommender, the meta-model of the

notation for which the RS is being defined, and a set of instance models conformant to this

meta-model. The instance models will be used to train (build) the recommender.

The RecommendationMethod class permits selecting the recommendation methods of interest

(e.g., item popularity, collaborative filtering, content-based) and configuring their parameters

(e.g., the neighbourhood size for collaborative filtering methods). The SplitMethod class allows

customising how to split the set of provided instance models for training and testing the RS. In

particular, it defines the split type (e.g., cross-validation, random), the number of folds (if

needed), the splitting method (per-user or per-item), and the percentage of data used for

training the RS (the rest of the data will be automatically assigned for testing). The

EvaluationMethod class defines all the configuration related to the evaluation of the RS,

namely, the metrics used to evaluate the RS (e.g., precision, recall, F1), the maximum number

of recommended items and the relevance threshold to consider in the evaluation. The

EvaluationResult class represents the values of the evaluation metrics after executing each

selected recommendation method. DomainClass allows specifying the type of the model

elements that will play the role of user in the context of the RS. Likewise, DomainProperty is

used to specify the type of the items to be recommended, which can be either features

(attributes or references) of the specified DomainClass or derived features via expressions.

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
22

Figure 10: Meta-model of the DSL for RS con.

Listing 3 illustrates the textual concrete syntax that we have devised for the DSL. The listing

configures the RS for our running example. For clarity, we assume our RS is to be developed

for simple class diagrams, conforming to the simple meta-model shown in Figure 11. This

meta-model allows the specification of ClassDeclarations, AttributeDeclarations and

MethodDeclarations.

Figure 11: Simple meta-model for class diagrams.

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
23

Listing 3: Example of recommender system configuration

In Listing 3, lines 1–2 identify the meta-model of the language the RS is built for (cf. Figure 8),

and the URL of a repository of instances of this meta-model (step 1 in Figure 9).

The following lines configure the RS (step 2 in Figure 9). Lines 5–6 specify the meta-model

elements that will play the roles of users and items in the RS. These elements must belong to

the meta-model provided in line 1. The listing sets the class ClassDeclaration as the User of

the RS, while its attributes, methods and superclasses are set as the Items of ClassDeclaration.

This means that the RS will be able to recommend these three kinds of items for a given class.

Then, lines 9–18 define the primary key used to identify each user and item in the RS, as well

as the features used for comparing this information for the item AttributeDeclaration. In

particular, its attribute attrName will be used as its primary key, and the features attrName and

attrType will be used for the comparison of attribute declarations.

The remainder of the listing declares recommender preferences. The Split fragment (lines 23–

27) configures the application of the cross-validation split method type with 10 folds, following

a per user technique, and using 80% of the input data as training data. The Methods fragment

(lines 30–33) selects the recommendation methods to apply and evaluate. Among others, the

DSL designer has selected some collaborative filtering methods such as pop (item popularity)

and cfub (collaborative filtering user base with 2, 3, 5 and 10 neighbours). Section 3.5 will

describe these methods. Finally, the Evaluation fragment (lines 36–39) selects the evaluation

protocol. In particular, line 37 chooses the metrics to be used for the evaluation, line 38

specifies the number of items to recommend, and line 39 defines a relevance threshold.

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
24

3.4 Data preparation

The step 3 of Figure 9, data preparation, is presented in this section. After the RS has been

configured using the DSL the first step that our framework performs is preparing the data for

building and evaluating the RS.

Figure 12 shows the steps followed. First, the framework retrieves the collection of models

specified with the DSL (1). Then, it extracts the model objects corresponding to the configured

types of users, items and item features (2). Lastly, it generates a user-item matrix and an item-

feature matrix for them (3). The user-item (resp. item-feature) matrix contains the users (resp.

items) as rows and the items (resp.features) as columns. Then, each cell is set to 1 if the user

(resp. item) has the item (resp. feature), and to 0 otherwise.

Figure 12: Data preparation steps.

Figure 13 shows an example of data preparation for the running example. To ease

understanding, we assume that there is a single class diagram with three classes (1). The table

with label 2 shows the extracted users, i.e., the three classes. The table with label 3 shows the

extracted items, i.e., each different attribute and method declaration. The item comparison is

based on the features selected in Listing 3 (e.g., attrName and attrType for attributes). The table

with label 4 shows the value of those item features. From this information, the framework

builds the user-item matrix shown to the right (5), where each row represents a class, and each

column represents an attribute, method or superclass. The figure also shows the generated item-

feature matrix (6).

Figure 13: Example of data preparation.

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
25

3.5 Recommendation engine

The steps 4 to 7 of Figure 9; data splitting, the RS creation and training, the RS evaluation, and

the RS deployment; are presented in this section. The matrices generated in the previous step

(data preparation) are the inputs to build the RS. The steps followed are depicted in Figure 14.

Figure 14: Steps to build the recommendation engine.

Our framework splits the provided data into two sets: one for training the RS, and the other to

evaluate the quality of the resulting system (2) (step 4 in Figure 9). The splitting is made

according to the specified protocol (see lines 23–27 in Listing 3). Next, the framework uses the

configured recommendation methods (3) to train the RS with the training set (4) (step 5 in

Figure 9). The RS designer may have configured several methods, as in lines 30–33 in Listing

3, and hence, several candidate RSs may be generated. Then, the test set is applied to each

candidate system, and a score is computed based on the obtained results in each case (5).

Finally, each candidate RS is evaluated (step 6 in Figure 9) according to the specified metrics

(6, see lines 36–39 in Listing 3), and the results are made available for the designer inspection.

In the long term, we envision an intelligent framework that is able to suggest the best

configuration for the target recommendation task and the available data (step 7 in Figure 9).

This would free the RS designer from having to possess deep expertise in RS techniques.

3.6 Evaluation

As a proof of concept and to evaluate our framework we have designed an experiment. In this

section we present the initial results of our envisioned framework. The framework presented is

being developed using Java and the Eclipse Modeling Framework (EMF) [EMF20].

The framework presented in this evaluation is applicable to languages defined by an Ecore

meta-model. For the moment, we have automated support for data preparation, data splitting,

RS training and RS evaluation. The configuration data must be provided programmatically

though, as the configuration DSL, while designed, is still under development. The deployment

of the generated RS in an LCDP is also future work.

To have an initial assessment of our framework, we have applied it to the construction of the

RS using Listing 3 as a running example. The RS would be integrated into an LCDP and would

suggest attributes, methods and superclasses that may be added to new classes, based on the

definition of other similar classes. By means of this experiment, we aim to answer the

following research questions.

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
26

● RQ1 Can a recommender system help in class modelling tasks?

● RQ2 Which recommendation method of relevant attributes, methods and superclasses

has the best performance?

● RQ3 Can hybrid approaches be beneficial for the recommendation of attributes,

methods and superclasses?

● RQ4 Which method performs better when considering user and item coverage in the

recommendation of relevant attributes, methods and superclasses?

We run the experiment on three datasets. Table 5 shows some size metrics of them (number of

models, users, items and item features). The Synthetic dataset contains 29 models conformant

to the running example meta-model (cf. Figure 4). The models were created manually using

EMF [EMF20]. These models are based on class diagram examples from the internet.We have

made sure that the models created have all the characteristics normally present on class

diagrams, such as attributes, methods and inheritance hierarchies.

Table 5: Description of the datasets.

The SyntheticExtended dataset extends the first one with further models which are similar to

those in the Synthetic dataset but substituting the name of some model elements by synonyms.

Finally, since meta-models are similar to class diagrams, our third dataset (AtlanEcore) is

composed of 300 Ecore meta-models from the AtlanEcore Zoo (https://web.imt-atlantique.fr/x-

info/atlanmod/index.php?title=Ecore). This is an open-source repository of Ecore meta-models,

which are conformant to the Ecore.ecore meta-metamodel. With this last dataset, we want to

validate the versatility of our proposal. The configuration of the RS for the first two datasets

was the one shown in Listing 3. The configuration for the AtlanEcore dataset was similar but

using types from Ecore.ecore (i.e., setting EClass as the user of the RS; eAttributes,

eOperations and eSuperTypes as the items; and so on).

As data splitting methodology we used 10-fold cross-validation with 80% of the data as a

training set, and the remainder 20% as a test set (cf. lines 23–27 in Listing 3). We followed a

per-user method, whereby the training and test sets are built per available user (i.e., for each

class, it takes 80% of its items for training and the rest for testing). Using 10-fold cross-

validation avoids over-specialization. This is so as the training set is split into 10 subsets, the

training is performed 10 times taking one of the subsets for testing and the others for training,

and finally, the average performance of the 10 learned RSs is reported.

For the recommendations methods, we trained the RS using a variety of collaborative, content-

based, and hybrid recommendation methods (cf. lines 30–33 in Listing 3). For reproducibility,

we used the RankSys framework (https://github.com/RankSys/RankSys) to implement the

methods. The recommendation consisted of the top 5 highest-rated items. In particular, the

collaborative methods will recommend to users (i.e., to classes) items (i.e., attributes, methods,

superclasses) that were rated (i.e., used) by like-minded users. The similarity between users and

items is based on rating patterns.

https://web.imt-atlantique.fr/x-info/atlanmod/index.php?title=Ecore
https://web.imt-atlantique.fr/x-info/atlanmod/index.php?title=Ecore
https://github.com/RankSys/RankSys

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
27

In the experiment,we evaluated both user-based and item-based k-nearest neighbour (k-NN)

heuristics. The item-based approach (cfib) creates neighbourhoods by exploiting the rating-

based similarities between items, and the user-based approach (cfub) computes similarities

between users. We have used the cosine as a similarity metric. We tested neighbourhoods of

size k = 2, 3, 5, 10. To refer to a specific instance of a method, we concatenate the value of k to

its name. For instance, cfub3 refers to collaborative user-based k-NN size k = 3. As a baseline,

we also evaluated the item popularity method (pop). The content-based method (cb) will

recommend to users (i.e., to classes) items (i.e., attributes, methods, superclasses) similar to the

ones liked (i.e., used) by the user. In this case, the similarity is computed based on profiles built

from textual information.

The item features correspond to text features extracted from the items, and the

recommendations are based on similarities in the text feature space. In the experiment, we used

the name and data type as features of attribute declarations; the name and return type as

features of method declarations; and the name of superclasses. Finally, the hybrid methods

exploit both rating and text features by combining content-based and collaborative methods.

We considered the methods cbub and cbib, which combine either user-based (cfub) or item-

based (cfib) collaborative filtering with content-based similarity (cb). We tested

neighbourhoods of size k = 2, 3, 5, 10. As before, we concatenate the name of the method and

the value of k. For instance, cbub5 refers to content-based user-based k-NN size k = 5.

We analysed the performance of the resulting RSs using some ranking-based, coverage and

diversity metrics typically used in RSs (cf. lines 36–39 of Listing 3). The metrics were

implemented in the RiVaL framework (https://github.com/recommenders/rival). The selection

of metrics depends on the faced recommendation problem. In particular, since our RS should

provide an ordered list of recommended items, we used the classical ranking metrics precision,

recall and F1. Precision is the percentage of the recommended items that are relevant; recall is

the percentage of relevant items included in the recommendation list; F1 is a harmonic means

of precision and recall. To measure coverage, we used the metrics USC (User Space Coverage)

and ISC (Item Space Coverage). USC measures the percentage of users that the RS can

recommend, and ISC the diversity in terms of the popularity of what is recommended. Finally,

to measure the quality of the recommended list, which should contain just the most relevant

items, we used the metric nDCG (Normalized Discounted Cumulative Gain). This metric

penalises when the most relevant items are not at the top of the list.

Table 6: Results of the experiment. The best values are shown in bold.

https://github.com/recommenders/rival

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
28

The results of the experiment are presented in Table 6. The rows contain the recommendation

methods used to train the RS, and the columns show their performance metrics. We can see that

the metric values are drastically different depending on the dataset. The AtlanEcore dataset has

the best overall performance. This is a common situation, which is due to differences on the

dataset sizes and user preference sparsity levels among the three. Hence, to evaluate the distinct

recommendation methods, relative metric value differences should be considered for each

particular dataset.

In the following we answer our research questions.

● RQ1 Can a recommender system help in class modelling tasks? In order to answer this

question, we analyse the performance of the recommendation methods. Specifically, we

look at their precision, recall and F1 values in Table 6, as they give a measure of the

ranking quality. With regards to our evaluation methodology, where the task is

recommending the most relevant items in the test set, the obtained performance is

relevant according to the literature [HHL+19],[NDD+19],[RRS15],[SGM17]. In the

AtlanEcore dataset, the highest F1 value was 0.289 for the cfub2 method. This shows

that we can build an RS that helps in class modelling by recommending valuable

attributes, methods and superclasses for a given class.

● RQ2 Which recommendation method of relevant attributes, methods and superclasses

has the best performance? In the SyntheticExtended and AtlanEcore datasets, the

collaborative filtering methods obtained the best performance. In particular, cfub2 has

the best results, as the F1 measure is 0.135 and 0.289 for the SyntheticExtended and

AtlanEcore datasets, respectively. Conversely, among the collaborative methods, the

baseline pop has the worst performance (e.g., 0.018 precision and 0.083 recall on the

AtlanEcore dataset). When it comes to coverage, pop has a very high USC value

(1.000), as it recommends the most popular items to all users. However, it possesses a

low ISC (0.002), which suggests a very low diversity. As for the Synthetic dataset, the

best result was obtained for the hybrid method cbib2, followed by all other collaborative

methods.

● RQ3 Can hybrid approaches be beneficial for the recommendation of attributes,

methods and superclasses? When analysing the hybrid methods applied in this

experiment, we observe that some performed very well. For instance, in the Synthetic

dataset, cbib2 performed even better than the collaborative methods, obtaining 0.095

precision, 0.199 recall, and an F1 value of 0.129.

● RQ4 Which method performs better when considering user and item coverage in the

recommendation of relevant attributes, methods and superclasses? We observe a

compromise between the coverage metrics USC and ISC, and the ranking-based

metrics. The methods with low precision and recall, like most of the hybrid ones, report

high user coverage and low item coverage. A good user coverage comes at the cost of

losing item diversity when compared to collaborative methods.

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
29

4. Summary, conclusions and further developments

In this document, we have described the initial design and prototypes for a system supporting

the development of web-based graphical editors supporting scalable modelling, heterogeneity

and recommendation. For this purpose, we have proposed an approach that follows software

language engineering principles [BCW17], separating the definition of the abstract syntax,

concrete syntax, scalability features and heterogeneity support. We have proposed an initial

prototype specially targeting migration of existing editors to the web. For the recommender, we

have proposed a DSL to configure the recommender system to arbitrary DSLs defined by a

meta-model. We have performed an initial evaluation showing good results.

In relation to ESR2’s work, we are currently working on providing support to migrate models

(not only editors), and also from other popular frameworks for DSL definition, like Sirius. We

also plan to work on the definition of modelling scalability features, including views and

abstraction patterns able to summarize a large graph into a smaller one (e.g., aggregating

parallel or sequential nodes) that is provided with a hierarchical visualization structure. As

mentioned in Section 2.2, we also plan to include support for specifying how the models of

heterogeneous DSLs can be connected, related and navigated.

In relation to ESR1’s work, currently, the DSL works under Xtext within Eclipse, but we plan

to migrate it to the web. We plan to apply our framework to more languages and modelling

tasks. Moreover, we plan to provide support for deploying the synthesised recommenders in the

LCDPs. Specifically, we foresee the provision of a chatbot -- integrated within the LCDP --

that citizen developers can address to access the recommendations.

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
30

5. References

[ACG+20] Lissette Almonte, Iván Cantador, Esther Guerra, and Juan de Lara. 2020. Towards

automating the construction of recommender systems for low-code development

platforms. In Proceedings of the 23rd ACM/IEEE International Conference on

Model Driven Engineering Languages and Systems: Companion Proceedings

(MODELS '20): 66:1–66:10.

[AT05] Gediminas Adomavicius and Alexander Tuzhilin. 2005. Toward the next

generation of recommender systems: A survey of the state-of-the-art and possible

extensions. IEEE Trans. on Knowl. and Data Eng. 17, 6 (2005), 734–749.

[BCW17] Marco Brambilla, Jordi Cabot, Manuel Wimmer: Model-Driven Software

Engineering in Practice, Second Edition. Synthesis Lectures on Software

Engineering, Morgan & Claypool Publishers 2017

[BEE+08] E. Biermann, K. Ehrig, C. Ermel, and G. Taentzer, “Generating eclipse editor plug-

ins using Tiger,” in Applications of Graph Transformations with Industrial

Relevance, A. Schürr, M. Nagl, and A. Zündorf, Eds., Berlin, Heidelberg: Springer

Berlin Heidelberg, 2008, pp. 583–584.

[BGS+10] Stefan Berger, Georg Grossmann, Markus Stumptner, Michael Schrefl:

Metamodel-Based Information Integration at Industrial Scale. MoDELS (2) 2010:

153-167. See also: http://dome.ggrossmann.com/

[BMD+20] Hugo Brunelière, Florent Marchand de Kerchove, Gwendal Daniel, Sina Madani,

Dimitris S. Kolovos, Jordi Cabot: Scalable model views over heterogeneous

modeling technologies and resources. Softw. Syst. Model. 19(4): 827-851 (2020)

[CJD17] Enrique Chavarriaga, Francisco Jurado, and Fernando Díez. 2017. PsiLight: a

Lightweight Programming Language to Explore Multiple Program Execution and

Data-binding in a Web-Client DSL Evaluation Engine. J. UCS 23, 10 (2017), 953–

968.

[dLGS13] Juan de Lara, Esther Guerra, Jesús Sánchez Cuadrado: Reusable abstractions for

modeling languages. Inf. Syst. 38(8): 1128-1149 (2013)

[dLV02] Juan de Lara and Hans Vangheluwe. 2002. AToM
3
: A Tool for Multi-formalism

and Meta-modelling. In International Conference on Fundamental Approaches to

Software Engineering. LNCS 2306, Springer, 174–188.

[DNF+20] Alfonso Diez, Nga Nguyen, Fernando Díez, Enrique Chavarriaga: MDE for

Enterprise Application Systems. MODELSWARD 2013: 253-256

[EC20] EMF Cloud. https://www.eclipse.org/emfcloud/, (last accessed in Nov. 2020).

[ECG+16] Hamza Ed-Douibi, Javier Luis Cánovas Izquierdo, Abel Gómez, Massimo Tisi,

Jordi Cabot: EMF-REST: generation of RESTful APIs from models. SAC 2016:

1446-1453

[EMF20] Eclipse Modelling Framework. https://www.eclipse.org/modeling/emf/, (last

accessed in Nov. 2020).

http://dome.ggrossmann.com/
https://www.eclipse.org/emfcloud/
https://www.eclipse.org/modeling/emf/

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
31

[EWD+96]J. Ebert, A. Winter, P. Dahm, A. Franzke, and R. Süttenbach, “Graph based

modeling and implementation with EER/GRAL,” in 15th International Conference

on Conceptual Modeling — ER ’96, Berlin, Heidelberg: Springer Berlin

Heidelberg, 1996, pp. 163–178.

[GB16] M. Gerhart and M. Boger, “Concepts for the model-driven generation of graphical

editors in eclipse by using the graphiti framework,” International Journal of

Computer Techniques, vol. 3, no. 4, 2016.

[GEF20] Eclipse Graphical Editing Framework, https://www.eclipse.org/gef/, (last accessed

in Nov. 2020).

[GMF20] GMF, https://www.eclipse.org/gmf-tooling/, (last accessed in Nov. 2020).

[Gra20] Graphiti, https://www.eclipse.org/graphiti/, (last accessed in Nov. 2020).

[GS15] Asela Gunawardana and Guy Shani. 2015. Evaluating recommender systems. In

Recommender Systems Handbook. Springer, 265–308.

[HHL+19] Bernd Heinrich, Marcus Hopf, Daniel Lohninger, Alexander Schiller, and Michael

Szubartowicz. 2019. Data quality in recommender systems: The impact of

completeness of item content data on prediction accuracy of recommender systems.

Electronic Markets (2019), 1–21.

[JGL17] Antonio Jiménez-Pastor, Antonio Garmendia, Juan de Lara. Scalable model

exploration for model-driven engineering. J. Syst. Softw. 132: 204-225 (2017)

[KGR+17] Dimitrios S. Kolovos, Antonio García-Domínguez, Louis M. Rose, Richard F.

Paige: Eugenia: towards disciplined and automated development of GMF-based

graphical model editors. Softw. Syst. Model. 16(1): 229-255 (2017)

[KEP+06] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, Gabriele Taentzer. Fundamentals of

Algebraic Graph Transformation. Monographs in Theoretical Computer Science.

An EATCS Series, Springer 2006

[KT08] Steven Kelly, Juha-Pekka Tolvanen: Domain-Specific Modeling - Enabling Full

Code Generation. Wiley 2008, ISBN 978-0-470-03666-2, pp. I-XVI, 1-427

[LMK+02] A. Ledeczi, M. Maroti, G. Karsai, and G. Nordstrom, “Metaprogrammable toolkit

for model-integrated computing,” in Proceedings of the IEEE Conference on

Engineering of Computer-based Systems, ser. ECBS, Nashville, Tennessee: IEEE

Computer Society, 1999, pp. 311–317.

[LSP20] Language Server Procotol. https://langserver.org/, (last accessed in Nov. 2020).

[M02] M. Minas, “Concepts and realization of a diagram editor generator based on

hypergraph transformation,” Sci. Comput. Program., vol. 44, no. 2, pp. 157–180,

Aug. 2002.

[MCK05] Frank McCarey, Mel Ó Cinnéide, and Nicholas Kushmerick. 2005. RASCAL: A

recommender agent for agile reuse. Artificial Intelligence Review 24, 3-4 (2005),

253–276.

https://www.eclipse.org/gef/
https://www.eclipse.org/gmf-tooling/
https://www.eclipse.org/graphiti/
https://langserver.org/

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
32

[MKK+14] Miklós Maróti, Tamás Kecskés, Róbert Kereskényi, Brian Broll, Péter Völgyesi,

László Jurácz, Tihamer Levendovszky, Ákos Lédeczi: Next Generation

(Meta)Modeling: Web- and Cloud-based Collaborative Tool Infrastructure.

MPM@MoDELS 2014: 41-60. See also https://webgme.org/, (last accessed in

Nov. 2020).

[MOF16] Meta Object Facility (OMG). http://www.omg.org/spec/MOF, 2016.

[MS10] Walid Maalej and Alexander Sahm. 2010. Assisting engineers in switching

artifacts by using task semantic and interaction history. RSSE@ICSE (2010), 59–

63.

[NDD+19] Phuong T. Nguyen, Juri Di Rocco, Davide Di Ruscio, Lina Ochoa, Thomas

Degueule, and Massimiliano Di Penta. 2019. FOCUS: A recommender system for

mining API function calls and usage patterns. In ICSE. IEEE, 1050–1060

[RCW+18] Roberto Rodríguez-Echeverría, Javier Luis Cánovas Izquierdo, Manuel Wimmer,

Jordi Cabot. Towards a Language Server Protocol Infrastructure for Graphical

Modeling. MoDELS 2018: 370-380

[RDC+20] Fatima Rani, Pablo Diez, Enrique Chavarriaga, Esther Guerra, Juan de Lara.

Automated migration of EuGENia graphical editors to the web. MODEProceedings

of the 23rd ACM/IEEE International Conference on Model Driven Engineering

Languages and Systems: Companion Proceedings (MODELS '20): 71:1-71:7

[RKP12] L. M. Rose, D. S. Kolovos, and R. F. Paige. Eugenia live: A flexible graphical

modelling tool. In XM @ MoDELS, pages 15–20. ACM, 2012.

[RMW+14] Martin P. Robillard, Walid Maalej, Robert J. Walker, and Thomas

Zimmermann. 2014. Recommendation Systems in Software Engineering. Springer-

Verlag Berlin Heidelberg 2014.

[RRS15] Francesco Ricci, Lior Rokach, and Bracha Shapira. 2015. Recommender Systems

Handbook (2 ed.). Springer US.

[SBP+08] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling

Framework, 2nd Edition. Addison-Wesley Professional, 2008.

[SGM17] Ritu Sharma, Dinesh Gopalani, and Yogesh Meena. 2017. Collaborative filtering

based recommender system: Approaches and research challenges. In ICICT. 1–6.

[Sir20] Sirius, https://www.eclipse.org/sirius/, (last accessed in Nov. 2020).

[Spr20] Eclipse Sprotty, https://github.com/eclipse/sprotty, (last accessed in Nov. 2020).

[SVM+13] Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Van Mierlo, S., Ergin, H.:

AToMPM: A web-based modeling environment. In: Invited Talks,Demonstration

Session, Poster Session, and ACMStudent Research Competition, MODELS’13,

vol. 1115, pp. 21–25. CEUR-WS.org (2013). See also: https://atompm.github.io/

[The20] Eclipse Theia. https://theia-ide.org/, (last accessed in Nov. 2020).

https://webgme.org/
http://www.omg.org/spec/MOF
https://www.eclipse.org/sirius/
https://github.com/eclipse/sprotty
https://atompm.github.io/
https://theia-ide.org/

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
33

[TKO+05] Masateru Tsunoda, Takeshi Kakimoto, Naoki Ohsugi, Akito Monden, and Kenichi

Matsumoto. 2005. Javawock: A Java class recommender system based on

collaborative filtering. SEKE, 491–497.

	1. Introduction
	2. Cloud-Based Domain-specific Graphical Modelling Environments
	2.1 Web-based graphical modelling environments: state of the art
	2.2 Lowcomotive approach to DSL definition
	2.3. Proof-of concept approach: enabling migration of editors to the web
	2.3.1 Eclipse Modeling Framework and EuGENia
	2.3.2 DPG (Diagram Programming Generator)
	2.3.3 Architecture and Tool Support
	2.3.3.1 Migrating the abstract syntax
	2.3.3.2 Migrating the concrete syntax

	2.3.4 Tool Support
	2.3.5 Evaluation

	3. Recommendation support for modelling environments
	3.1 Background
	3.2 Proposed approach
	3.3 Domain-specific language for configuring the RS
	3.4 Data preparation
	3.5 Recommendation engine
	3.6 Evaluation

	4. Summary, conclusions and further developments
	5. References

