
 “This project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie

grant agreement No 813884”.

Project Number: ​813884

Project Acronym: ​Lowcomote

Project title: ​Training the Next Generation of Experts in Scalable Low-Code Engineering
Platforms

D3.2. Lowcomotive Integrations - Interim Version

Project GA: ​813884

Project Acronym: ​Lowcomote

Project website: ​https://www.lowcomote.eu/

Project officer: ​Dora Horváth

Work Package: ​WP3

Deliverable number: ​D3.2

Production date: 30-11-2020

Contractual date of delivery: ​November 30th 2020

Actual date of delivery: ​November 30th 2020

Dissemination level:​ Public

Lead beneficiary: ​British Telecom Plc.

Authors:Léa Brunschwig, Felicien Ihirwe, Panagiotis Kourouklides, Joost Noppen

Contributors: ​Jolan Philippe

1

https://www.lowcomote.eu/

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
2

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
3

HISTORY OF CHANGES

Version Publication date Change

1.0 30-11-2020 ▪ Initial version

Project Abstract

Low-code development platforms (LCPD) are software development platforms on the Cloud,
provided through a Platform-as a-Service model, which allow users to build completely
operational applications by interacting through dynamic graphical user interfaces, visual
diagrams and declarative languages. They address the need of non-programmers to develop
personalised software, and focus on their domain expertise instead of implementation
requirements.

Lowcomote will train a generation of experts that will upgrade the current trend of LCPDs to a
new paradigm, Low-code Engineering Platforms (LCEPs). LCEPs will be open, allowing to
integrate heterogeneous engineering tools, interoperable, allowing for cross-platform
engineering, scalable, supporting very large engineering models and social networks of
developers, smart, simplifying the development for citizen developers by machine learning and
recommendation techniques. This will be achieved by injecting in LCDPs the theoretical and
technical framework defined by recent research in Model Driven Engineering (MDE),
augmented with Cloud Computing and Machine Learning techniques. This is possible today
thanks to recent breakthroughs in scalability of MDE performed in the EC FP7 research project
MONDO, led by Lowcomote partners.

The 48-month Lowcomote project will train the first European generation of skilled
professionals in LCEPs. The 15 future scientists will benefit from an original training and
research programme merging competencies and knowledge from 5 highly recognised academic
institutions and 9 large and small industries of several domains. Co-supervision from both
sectors is a promising process to facilitate agility of our future professionals between the
academic and industrial world.

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
4

Executive summary

This document introduces an evolving design and implementation for a low-code development
platform (LCDP) that can support low-code development activities in a range of application
domains. The platform is intended to provide the base building blocks for creating specialised
LCDPs in specific domains ranging from chatbots and data science to the Internet of Things. In
this deliverable we report on the progress that has been made towards this goal and the future
activities that are planned.

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
5

Table of contents

Project Abstract 4

Executive Summary 5

Table of contents 6

1. Introduction 7

2. ​Application Creation using Domain Specific Languages 8

3. ​Integrations for IoT for Smart Cities and Knowledge Models 15

4. Summary and further developments 24

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
6

1. Introduction

The present document is a deliverable of the Lowcomote project (Grant Agreement n°813884),
funded by the European Commission Research Executive Agency (REA), under the Innovative
Training Networks Programme of the Marie Sklodowska Curie Actions
(H2020-MSCA-ITN-2018). The purpose of this document is to provide an overview of the
work towards app creation and integration as part of the Lowcomote research projects.

A core goal of the Lowcomote project is to explore the opportunities and potential of low-code
development platforms (LCDP) in a variety of application domains. Among others the project
explores domains ranging from chatbots and data science to the Internet of Things. Each of the
areas naturally will cover domain specific concepts, workflows and challenges, but at the same
time the Lowcomote project will explore common elements in these domains so that they can
be supported by a uniform LCDP which in turn can be extended to support these specific
domains. In this deliverable we report on the progress that has been made towards this goal and
the future activities that are planned.

In this deliverable we will first cover the progress that has been made in defining approaches
and driving towards base architectures for LCDPs within specific domains covered by the
Lowcomote project and workpackages. This will cover progress in the domains of smart cities,
data science and mobile applications. Second we will cover the overlap between these initial
efforts and how this is shaping the future work that will lead to a uniform LDCP with
integrations across various application domains.

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
7

2. Application Creation using Domain Specific Languages

A major focal point of the Lowcomote project is to explore how low code development can
support the creation, deployment and management of applications. With an increasing number
of roles in research and development in industry requiring some form of software development,
there is a need for tools that can aid citizen developers to achieve their goals without the need
for retraining. Given the specifics of the domains in which these roles are emerging, such as
data science, they tend to have specific workflows, concepts and deliverables that differ from
traditional software development. This makes them well suited for the application of domain
specific languages (DSLs) and code generation, as these can bridge the gap between the
domain and the realisation of its applications in software. In this section we cover the progress
made in the Lowcomote project on the definition of DSLs and workflows for the collaborative
mobile apps and data science domains.

Collaborative Mobile Apps Using Active DSLs

This Section concerns task 3.5 and its progression for deliverable 3.2. We will first remind the
goals of task 3.5 and give some background. Then, we will present the progress and first results
obtained during the first year of research.

Task 3.5 “Low-code Development of Rich Collaborative Mobile Apps using Active DSLs”
aims at :

● Defining the state of the art of the use of modelling inside the mobile devices and the
classification of these tools,

● Designing different DSLs to extend the notion of Active DSLs, including context,
role-based access control and augmented reality,

● Implementing an app-based and web-based editor for the creation of Active DSLs,
● Integrating the solution inside the common LCDP of the Lowcomote project.

As a first contribution, we are realizing a Systematic Mapping Studies (SMS) [1] on
domain-specific modelling with mobile devices which consists of retrieving papers from
several databases (Scopus, IEEE, Springer Link, ACM, …), reviewing them and classifying the
tools from these papers and comparing them.

Concerning the second goal of Task 3.5, we will first provide some background and then
explain our contributions.

Traditionally, modelling is an activity which takes place in static environments, such as
desktops and laptops. Moving this exercise to mobile devices will allow the exploitation of
features proper to these mobile devices, for instance, geo-positioning, external interactions,
context, … Overcoming these challenges will also provide a simplified environment where
non-programmers will be able to model wherever they want.

The approach will use Active DSLs (Figure 2.1) for its implementation. An Active DSL is a
novel approach, proposed in [2], which can be deployed on both desktop computers and mobile
devices, however, the latter ones permit exploiting features which are only relevant in mobility.
An Active DSL is composed of a set of “feature metamodels” that will annotate a domain
metamodel created by the user. They can have any concrete syntax but we advocate the use of a

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
8

graphical syntax to represent the models in order to facilitate their use by end-users.

Figure 2.1: Elements to describe and deploy Active DSLs.

Active DSLs can profit from geolocation of some model elements in a map and can represent
the DSL users in the model to identify their current position thanks to a geo-positioning
meta-model. Active DSLs also have the ability to communicate with external services using the
external interaction meta-model which considers two kinds of external elements: external
devices (e.g. IoT devices) and services (e.g. web services). A context meta-model would permit
to define contextual rules for rendering the domain meta-model context-aware. This would give
the ability to an Active DSL to react to external events triggered by external interactions (like
IoT devices or web APIs) or to the current state of native functionalities of the mobile device
(like sensors or internal clock). In certain circumstances, it might be necessary to render the
model or the user interaction differently depending on the roles and permissions granted to the
users. Finally, the domain meta-model could also be represented using augmented reality for
enhancing the users’ experience. In addition to all these aspects of the Active DSLs, many
modelling scenarios could greatly benefit from collaboration, either local or centralized (e.g.
relies on servers and allows remote collaborations between distant users) and can enable
extended modelling, which refers to additional elements beyond those described in the
language, such as pictures, sketches or text annotations that enrich the collaboration or the
semantic of a model.

Our second contribution has been described in [3] and we will give a short overview. We chose
to focus firstly on the User Role DSL. Its meta-model is shown in Figure 2.2 and an example of
its concrete syntax is Listing 2.1. It permits to describe role hierarchies and permissions to
restrict the access and use of an Active DSL and its instances. We distinguish the following
kind of roles:

● Admin which refers to the author of the language and any granted users. Every Active
DSL must include exactly one role of this kind, which gives access to all functionalities
and elements of the language.

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
9

 Figure 2.2: User role meta-model. Listing 2.1: Example of the User Role MM
 concrete syntax.

● Guest which refers to users who have not been assigned any other role. This is typically
the role with the least permissions, and by default, it forbids access to the model. There
is exactly one role of this type.

● Custom Role which refers to language-specific roles (“tourist” and “touristic guide” in
Listing 2.1).

Likewise, permissions are classified into two distinct groups which determine their action
scope:

● Editor permissions are applied on functionalities of the editor e.g., allowing
collaboration, model sharing, attaching pictures or reactions (visual alerts) to model
elements, among others (“@DSL” in Listing 2.1).

● DSL permissions concern the management (i.e., creation, deletion, modification, etc) of
the elements of the domain meta-model. They can target classes as well as their
attributes and references (“@Editor” in Listing 2.1).

Permissions and role categories can define attributes to be informed when the language is
deployed. As an example of the former, one could define the address or the name of an external
service or device, to restrict its exploitation by users. As an example of the latter, one could
define that tourists have a name and age, and touristic guides speak a number of languages. The
value of this attribute should be informed for each particular user having the role. Attributes so
defined can be either public or private, which means a public attribute can be seen by all but a
private one can only be seen by the role categories above. The attributes of a guest can be seen
by all but the private attribute of an admin cannot be seen by anyone.

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
10

Figure 2.3: Architecture of DSL-comet.

Finally, permissions can have contextual constraints for limiting them in certain situations. In
Figure 2.2, the class GeoConstraint is used in Listing 2.1 at line 27 and specifies that a tourist
can add pictures only when they are within 10 metres of a location. The expansion of our role
model with more contextual constraints will be the topic of future work with the creation of a
Context DSL for defining contextual rules.

As depicted in Figure 2.1 and stated in the second goal of task 3.5, the notion of Active DSLs
will be enriched with Augmented Reality (AR). We are currently working on the elaboration of
an AR DSL and making tests.

The third goal of Task 3.5 concerns the implementation of an app-based and web-based editors
for the creation of Active DSLs. We already have the former one which is called DSL-comet
and we are working on the latter one.

DSL-comet is a modelling editor aimed at supporting Active DSLs and it runs on iOS devices
(iPhones and iPads). It can be installed from Apple’s app store, its home page is
https://diagrameditorserver.herokuapp.com and a demonstration video to illustrate some of its
features is available at ​https://youtu.be/rzhl9yMFSxI​. Figure 2.3 depicts the architecture of
DSL-comet. Users can download the Active DSL definitions stored on a remote database, then
start building models and store them either locally or in the database. DSL-comet provides an
API broker service to manage interaction with external services and supports geo-services:
models can be geo-positioned on the map and it can perform geolocation queries. DSL-comet
website is used for managing the list of Active DSLs and their instances.

Figure 2.4 shows the architecture of our tool with the integration of the User Role DSL and
some parts are still under development. On DSL-comet’s app, users can consult their current
role as well as the list of roles available for a specific meta-model however the behavior of
roles and permissions needs to be implemented. On DSL-comet’s website, the sign in and sign
up functionalities have been added, the notion of user session, roles and user role models have
been added to the database, and hierarchy of users and attribution of roles for a specific
meta-model is possible.

As a future work, we plan to finish the implementation of the User Role DSL in DSL-comet
and to develop an Xtext editor in the cloud for defining the annotation model of the Active
DSLs such as our User Role models.

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018

11

https://diagrameditorserver.herokuapp.com/
https://youtu.be/rzhl9yMFSxI

Figure 2.4: Management of roles within DSL-comet.

The ultimate goal of task 3.5 “Integrating the solution inside the common LCDP of the
Lowcomote project” is not part of deliverable 3.2 and will be tackled later.

[1] Petersen, K, Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in software
engineering. In: Proceedings of the 12th International Conference on Evaluation and
Assessments in Software Engineering, EASE’08, p. 68-77. BCS Learning and Development
Ltd., Swindon, GBR (2008)

[2] Vaquero-Melchor, D., Palomares, J., Guerra, E., de Lara, J.: Active domain-specific
languages: Making every mobile user a modeller. In: Proc. ACM/IEEE MODELS, pp. 75-82.
IEEE Comp. Soc. (2017)

[3] Brunschwig, L., Guerra, E., de Lara, J.: Towards access control for collaborative modelling
apps. In Proceedings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems (2020)

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
12

Deploying and Knowledge Model Monitoring

In this section, the progress of task 3.3 in relation to deliverable 3.2 is presented. The contents
of this section are going to be organized as follows: First, a short description of the goals for
task 3.3, as they were more clearly defined during the first year of research, are given.
Following that, we are going to present the research direction chosen as well as the progress so
far in relation to those goals. During the first year of research, we published a workshop paper
as part of the Models 2020 conference. Since that paper also outlined our first-year results and
our future research direction, parts of it are adapted for the purposes of this report.

The overarching goals of task 3.3 is to enable data scientists to easily and rapidly deploy
machine learning models in a production-grade capacity. In order to be able to achieve this goal
effectively, a lot of effort was invested in getting acquainted with the intricacies of the machine
learning workflow. We achieved this by following the two-fold approach of conducting a
review of the available academic literature in the area, supplemented by also conducting
one-to-one interviews with data science practitioners inside BT. As a result, we discovered that
the machine learning workflow consists of three, equally important, parts. Namely, data
preparation, model creation and the post-creation activities. In the figure below, one can see a
graphical representation of the workflow divided in the three sections that we are going to
discuss. For our chosen research direction to be better understood, we will now give a short
description for each of the parts.

Figure 1: Typical Machine Learning Workflow

The first part of the machine learning workflow, as mentioned, is data preparation. In contrast
to classical computer science algorithms, machine learning solutions need vast amounts of data
in order to be effective. Thus, a large portion of the machine learning workflow has to do with
data-related activities. According to an internal survey conducted by Microsoft, the top ranked
challenge in the field of machine learning, as perceived by employees working in it, is data
availability, collection, cleaning, and management. Due to the importance of data, organisations
that integrate machine learning in their products, have invested substantial engineering
resources in developing systems that can validate incoming data. These organisations have also
developed systems which enable users to specify the expected properties of the data that is to
be received. Subsequently, the system automatically checks that the incoming data adheres to
the specifications. The goal is to keep the quality of incoming data consistent and alert the
engineers of any anomalies. By ensuring that all the data is of high quality, it can then safely be
used for training new models or fed into existing models for inference. In that regard, one could
draw a parallel to software testing. In the same way, developers of traditional software products
would like to test new code to make sure it doesn’t introduce bugs in their code base,
developers of machine learning systems should test new incoming data to make sure that they
are consistent with what the system expects to receive.

The second group of activities in the machine learning workflow, has to do with the creation of
the model artefact. These are perhaps the activities mostly perceived to be the core of machine

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
13

learning but are usually just a small part of the overall system, in terms of code volume. The
model created at this stage is the result of an iterative process by which different aspects of the
raw data, algorithms and input parameters for these algorithms are experimented with in order
to find out which combination delivers the best performance. Keeping in mind that this
experimentation might take place over several days and be performed collaboratively by
several data scientists, it becomes evident that there is a need for a system that can keep track
of the performance metrics of every combination of factors that was attempted. Such systems
have indeed been designed and are in use by teams that train machine learning models. Every
time a machine learning model is trained, the system stores a variety of metadata in a database
for future reference. The stored metadata can include the dataset used for training and
evaluating the model, the performance metrics achieved by the model when evaluated, the
input parameters used for the training of the model and also custom fields that the developer
wants to associate with that particular training run. These kinds of metadata databases are
usually private, and access is given selectively to members of a specific team or company. One
exception to this is the OpenML database which largely shares the same capabilities as
described above but is open for anyone to contribute with new datasets, training runs etc.

The final group of activities in the machine learning workflow, are the activities that follow the
creation of the model artifact. In a research setting, the machine learning workflow of the
researcher commonly concludes with the training and evaluation of the model. If the produced
model would achieve performance metrics superior to those of the state of the art, the results
would be published for other researchers to be informed and build upon them. On the other
hand, when applying machine learning techniques in a commercial setting, the goal is to
incorporate the output of the model in a product that customers (internal or external) will use.
For this reason, the model artefact will have to be somehow deployed so that it is reachable by
the customer-facing part of the application. There are various tools that can facilitate the
serving of machine learning models, such as TensorFlow-serving. In addition to deploying the
model, a strategy needs to be devised for the monitoring of the model’s performance over the
course of time. There is no guarantee that the model’s performance during its deployment will
be consistent with its performance during evaluation. There are various reasons for that, such
as, training based on non-representative samples, as well as the dynamic and ever-changing
nature of the world. For this reason, it is essential that the performance of the model is
monitored as to ensure the quality of its output on a continuous basis.

After reviewing all the aforementioned parts of the machine learning workflow, along with the
relevant software tools that are available for them, we decided to focus on the area of
post-model-creation activities. Specifically, we aspire to create a low-code solution that
comprehensively tackles the challenge of monitoring the performance of a deployed machine
learning model on a continuous basis. After researching the factors that affect the long-term
performance of machine learning models, we have outlined the specific features that our
low-code solution should include. Specifically, our solution will seek to automate the aspects of
data capture, performance degradation detection as well as performance degradation response.
To date, we have produced several demos that detect performance degradation using existing
technologies, in order to better understand the gaps that exist. More importantly, we are in the
process of developing the first iteration of a DSL that will tackle the problem of data capture
by automatically generating all the software infrastructure that is needed, based on the data
scientist’s declarative statements. We believe that the successful development of such a
solution will enable all data scientists to focus more of their resources in doing what they are
best at, while we take care of mundane technical details.

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
14

3. Integrations for IoT for Smart Cities and Knowledge Models

In this Section we cover progress that has been made in a more specialised and comprehensive
domain for low code environments, that of Internet of Things for Smart Cities. Naturally this
domain has a focus on application development for such smart cities. However it also has a
strong interplay between data collection devices, analysis, networks, etc. This in turn means
that research in this area is driving the creation of platform elements that can address software
and application development as well as hardware interaction and connectivity. The progress in
this area can be found below.

Urban Area Management in Smart Cities

This Section contains the progress work under WP3: Low-code Engineering of Large-Scale
Heterogeneous Systems. The task which is associated with this is ​Task 3.4 : Urban Area
Management in Smart Cities and its deliverable would be D3.2: ​Lowcomotive Integrations.
First we will define the goals of task 3.4 and give the topic background. After, we will present
the current progress and the results so far and finally, introduce our proposed approach.

The task 3.4 entitled ​Urban Area Management in Smart Cities goal is to introduce
Lowcomotive integration of IoT for Smart Cities. As a main contribution to the WP3, it will
propose a​ ​domain-specific language for the design of large and complex IoT systems like Smart
Cities and present the possible integration mechanisms with Lowcomotive platform.

State of the art

Nowadays, ​IoT is regarded as a collection of automated procedures and data, integrated with
heterogeneous entities (hardware, software, and personnel) that interact with each other and
with their environment to reach common goals [1]. In our daily life, we see more intelligent
traffic lights, advanced parking technologies, smart homes, and intelligent cargo movement.
This is due to the rising adoption of artificial intelligence (AI) and 5G infrastructure in helping
the global IoT market register an increased growth. ​Developing such systems has to cope with
several challenges mainly because of the heterogeneity of the involved sub-systems and
components including human being intervention.

Figure 1 illustrates the high-level architecture of a typical IoT system. A ​thing is a combination
of on-board devices including ​sensors​, ​tags​, ​actuators​, and ​physical entities ​like cars, watches,
etc. Data is generated from a sensor or a tag attached to the physical entity the user is interested
in. A computing ​device (such as an Arduino, a Raspberry Pi, etc.) collects data and sends them
to the nearby ​gateway using some well-known protocols such as Z-Wave, MQTT, HTTP,
Bluetooth, Wi-Fi, Zigbee, etc.

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
15

Fig 3.1. High-level architecture of a typical IoT system

The ​Gateway component acts as a bridge between the physical and digital worlds. Note that in
some cases, devices and gateways can make some simple logical computation and respond to
some events without the need for further processing. The platform server is a combination of
processing and storage resources on the cloud. At this stage, data can be streamed, analyzed, or
manipulated for meaningful information to be communicated back to things, users, or third
parties services

In our first year of research, we focused on understanding the current state of the art Low-code
engineering by conceiving languages and tools supporting the development of IoT systems. ​In

our ​published paper at the 1​st Low-code workshop at MODELS’20 conference[2], we have
examined the current state of art on model driven engineering approaches for IoT by taking into
account low-code development platforms in particular. The selection process was done

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
16

iteratively by exploring different platforms such as Google scholar. After some manual paper
mappings we selected 16 approaches considering the fact that a given approach has a
supporting tool accompanied, is more recent that 2010, uses MDE as an underlying technique,
and has at least three scientific publications or reports referring to it.

The platforms were divided into two categories considering their basic implementation
mechanisms. In particular, the first category consists of tools based on the Eclipse technologies
such as Eclipse Modeling Framework (EMF), Graphical Modeling Framework (GMF), and
Papyrus environment. The second category is a collection of tailor-made low-code
development platforms. Figure 2 shows the common categories pattern based on their
underlying infrastructures.

Fig 3.2. MDE and LCDP for IoT categories.

Taxonomy development and findings

Our study has been performed by conceiving a taxonomy consisting of features characterizing
the studied IoT development platforms. By analyzing the languages and tools overviewed in the
previous Section, we identified and formalized their corresponding variabilities and
commonalities in terms of a feature diagram. These features were selected mainly based on the
common understanding regarding the stages to be followed in the software development
process, from requirement definition, system design, development, deployment and
maintenance of a robust complex system.

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
17

Concerning the selected features we have: ​Requirement modeling support features group which
evaluates whether a tool has an inbuilt requirement specification environment. Supporting this
feature is very important because it helps keep track of whether the specified requirements are
correctly implemented throughout the whole development. This also helps in requirements
traceability and verification. ​Domain Modeling support refers to the kind of modeling tools
interface the tool has, e.g., if it is graphical or not, if it gives the possibility to model the static
structure of system’s blocks or components. Some of the analyzed systems provide modelers
with behavior modeling capabilities to specify semantic concepts relating to how the system
behaves and interacts with other entities (users or other systems).

Testing and verification suppor​t refers to whether a tool has inbuilt mechanisms to test artifacts
before deployment which can be done by conducting different verification. To be more specific
this feature examines if the tool has a testing workbench, an inbuilt model checking and
validation facility. ​Analysis environment features are related to the capability of the considered
environment to support different analysis methods for the intended system before its
deployment. This can be done on different blocks or components of the system by checking on
their responsiveness in case of failure, networkloss, security breach, and so on. In this regard,
we can feature dependability analysis, real-time analysis, and system quality of service in
general.

Reusability feature group illustrates whether the tool under analysis allows the export of
artifacts for future reuse. This can be done on developed models or on generated artifacts.
Reusability Features are also dealt with the way artifacts are managed e.g., locally or by means
of some cloud infrastructure. ​Deployment ​support features evaluate the ways the developed
artifacts are deployed and how ready are to be deployed. To the best of our knowledge, this
should be one of the important features to focus on when implementing a novel tool. We also
looked at whether the development tool can be installed locally or on the cloud depending on
the client's interest.

In addition, the ​Interoperability ​feature ​examines the ability of a tool to exchange information
either internally between components, exposeor consume functionalities or information from
external services e.g., by means of dedicated APIs. ​Extensibility feature checks whether the tool
provides the means for refining or extending the provided functionalities. In the case of
modeling tools, such a feature is related to the possibility of adding new modeling features and
notations. Finally, ​Target support feature refers to the characteristics of the target
infrastructure, which enables the execution of the modeled system. Figure 3 shows the top-level
feature diagram, where each subnode represents a major point of variation.

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
18

Figure 3.3: the top-level feature diagram

Further than the previous features, we included an "​additional characteristics​'' field to highlight
the additional aspects of the selected tools. In particular, some tools target early phases of
development like system design, data acquisition, system analysis by focusing on the thing
behaviour. Some other tools target the application layer functionalities without taking much
care of the data acquisition phases. This is being done by integrating the tool with already
implemented data source engines, etc. Another peculiar aspect is if the considered approach is
available as open source or not having this an important impact on the possibility for the
community to contribute to its development.

Findings

The features explained above were used to evaluate the functionalities and the services
supported by each analyzed platform. Table 1 gives expanded details about the findings from
the described taxonomy. In this section, we are going to list a brief description of the finding in
accordance with what we’ve found during our study. As a last step, we identified some
weaknesses and limitations of those already existing approaches and discussed possible ways
for addressing them in the future.

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
19

First, according to Table 1, we can see a huge lack of focus on requirement specification except
for tools such as SysML4IoT[1] (as it extends SysML​1 infrastructure which enforces
requirement specification) and FRASAD[4], which enforces the requirement specification at
the initial modeling phase using rules that can be tracked throughout. The huge lack of analysis
support for almost all the tools selected is alarming. We think that it is highly important to
analyze and verify the intended system’s behavior before deployment as it gives developer
indications of what may happen before deployment and helps make any adjustment earlier
enough. Moreover, from Table 1 we see that most of the tools can run locally, especially
eclipse-based tools; however most LCDPs can run both locally and on the cloud.

For instance, we noticed a lack of standards to support the model-based development of IoT
systems due to technology evolvement and the presence of heterogeneous players making the
IoT reference meta-modeling convoluted.

Second, we noticed a limited support of multi-view modeling except for CAPS[5],
MED4IoT[6], AtmosphereIoT​2​, and Mendix​3​. This technique presents enormous benefits as it
enforces separation of concerns: the system component is designed using a single model with
dedicated consistent views, which are specialized projections of the system in specific
dimensions of interest [3]. Moreover, this technique is regarded as a complicated matter to
address for tailor-made low-code development platforms as they mostly focus on connecting
dots aiming at having an application up and running.

Third, we noticed a limited support for cloud based model-driven engineering. Moving model
management operations to the cloud and supporting modeling activities via cloud
infrastructures in general is still an open subject. From our study, we noticed that mostly
low-code development approaches provide the option to run tools on cloud or on-premise. This
is not yet the case of tools based on eclipse environment which still requires local deployments.

1 ​https://www.eclipse.org/papyrus/components/sysml/
2 ​https://atmosphereiot.com/
3 ​https://www.mendix.com/

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
20

https://www.eclipse.org/papyrus/components/sysml/
https://atmosphereiot.com/
https://www.mendix.com/

Table 1: Findings

Finally, we see a limited support for testing and analysis infrastructure. Very few tools care
about the testing and analysis phases of the IoT system development process. There is still a big
challenge regarding how to analyze IoT systems responsiveness before deployment. The
complexity of the problem relies on the fact that IoT systems involve human interaction,
environment constraints. To this point, we have also to agree on the heterogeneity of the target
platforms that makes it hard to depict the kind of analysis properties to take into account.

Proposed approach

To cope with the aforementioned challenges, we are working on an ideal IoT domain-specific
language named “​CHESS4IoT​'' relying on existing IoT reference standards. We intend to
exploit the open source CHESS tool, available on Eclipse, developed though a large
collaborative R&D effort and coordinated by Intecs, due to its flexibility, reliance on standards
and rich infrastructure in terms of model development, analysis and verification. CHESSML
provided by CHESS, is an integrated modeling language profiled from OMG standard​4
languages such as UML, SysML, and MARTE under the Papyrus modeling environment​5​.

4 ​https://www.omg.org/
5 ​https://www.eclipse.org/papyrus/

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
21

https://www.omg.org/
https://www.eclipse.org/papyrus/

The ideal CHESS4IoT will be composed of a number of metamodels developed to focus on
several aspects of the system. For instance to ensure the scalability and separation of concerns
of our intended approach, views will be designed based on metamodel and they will be
responsible of handling designs such as ​requirement ​definition of the system, the ​structural
aspects of the system, ​deployment aspects ​of the developed or generated artifacts,
operational aspects to take care of the behavioral aspects of the system by taking into account
contexts and states, ​functional aspects to focus on system’s functionality at runtime and
finally, ​communication aspects such as network protocols and messaging mechanisms
between sub-components. Figure 3.4 gives the conceptual metamodel of views of CHESS4IoT
domain specific language.

This approach will uphold the multi-view technique as the aforementioned aspects will be
modeled separately and merged later for transformation and artifacts generation. CHESS4IoT
will be developed either by extending CHESSML metamodel with a specific set of stereotypes,
contracts, and operations profiled specifically for IoT or through integrating it with new
external platforms.

Figure 3.4. CHESS4IoT high-lever views architecture

In order to tackle the analysis and verification, CHESS4IoT will later take into account the
security aspects and the already existing dependability analysis techniques such as Fault Mode
Effect Analysis, Fault Logic Analysis, and Fault Tree Analysis available in CHESS. On the
code generation side, we intend to use the open-source ThingML code generator because of its
​advanced multi-platform code generation which supports various target programming
languages such as C, C++, Java, Arduino, and JavaScript. At long last, the Lowcomotive
integration will be accomplished by permitting the locally developed model and generated code
to be deployed to the Lowcomote repository.

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
22

REFERENCE

[1] Flávia C. Delicato Paulo F. Pires, Bruno Costa. 2016. Modeling IoT Applications with
SysML4IoT. ​42th Euromicro Conference on Software Engineering and Advanced Applications
(2016).

[2] Felicien Ihirwe, Davide Di Ruscio, Silvia Mazzini, Pierluigi Pierini, and Alfonso
Pierantonio. 2020. Low-code engineering for internet of things: a state of research. ​23rd
ACM/IEEE International Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings (MODELS '20)​. Article 74, 1–8.
DOI:​https://doi.org/10.1145/3417990.3420208

[3] Laura Baracchi, Silvia Mazzini, John Favaro. 2015. A model-based approach across the IoT
lifecycle for scalable and distributed smart applications. 2015 ​IEEE 18th International
Conference on Intelligent Transportation Systems (2015)​.
https://doi.org/10.1109/ITSC.2015.33

[4] Thiago Nepomuceno, Tiago Carneiro, Paulo Henrique Maia, Muhammad Adnan, Thalyson
Nepomuceno, and Alexander Martin. 2020. AutoIoT: a framework based on user-driven MDE
for generating IoT applications. ​In Proceedings of the 35th Annual ACM Symposium on
Applied Computing (SAC '20). ​719–728. DOI:​https://doi.org/10.1145/3341105.3373873

[5] M. Sharaf, M. Abusair, H. Muccini, R. Eleiwi, Y. Shana’a, and I. Saleh. 2019. Generating
Heterogeneous Codes for IoT Systems Based on CAPS. ​In 2019 ACM/IEEE 22nd International
Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C).
736–737

[6] R. Spalazzese and F. Ciccozzi. 2016. MDE4IoT: Supporting the Internet of Things with
Model-Driven Engineering. ​In International Symposium on Intelligent and Distributed
Computing (2016), 67–76.

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
23

https://doi.org/10.1145/3417990.3420208
https://doi.org/10.1109/ITSC.2015.33
https://doi.org/10.1145/3341105.3373873

4. Summary and further developments

In this deliverable we have reported on the progress the Lowcomote project has made with
respect to Low-Code Development Platforms (LCDP) in a variety of application domains.
Within Lowcomote, a variety of domains is being studied within the context of LDCP, ranging
from data science and mobile application to IoT and Smart Cities, and each of these domains
offers unique challenges and development processes for its citizen developers. It is within the
remit of this project to determine within this constellation of domains where commonalities can
be found and how domain specific requirements and workflows can be supported by a uniform
LDCP.

The progress reported in this deliverable focusses around the areas of collaborative mobile
apps, IoT and Smart Cities, and data science, and within these domains the first concepts and
domain specific language elements have been identified and described based on in-depth
analysis of previous work, case studies and prototype implementations. The next steps will
consist of analysing the prototypes for commonalities and variabilities and defining the uniform
architecture for the Lowcomote LDCP that makes these common elements available to serve as
a foundation for specialised development platforms. This includes for example uniformised
code generation capabilities and DSL support. The variability analysis of these prototypes will
reveal where the base platform needs to support flexible integration and extensions that allow
supporting domain specific actions, workflows and artefacts. The realisation of this will be
covered in subsequent project deliverables.

Grant Agreement n°813884 – Lowcomote – Horizon2020 – MSCA – ITN – 2018
24

