
“This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No 813884”

Project Number: 813884

Project Acronym: Lowcomote

Project title: Training the Next Generation of Experts in Scalable Low-Code Engineering Platforms

Concepts for Mining Low-Code Engineering
Repositories

Project GA: 813884

Project Acronym: Lowcomote

Project website: https://www.lowcomote.eu/

Project officer: Thomas Vyzikas

Work Package: WP4

Deliverable number: D4.2

Production date: 31 March 2022

Contractual date of delivery: 30 November 2020

Actual date of delivery: 31 March 2022

Dissemination level: Public

Lead beneficiary: Johannes Kepler University Linz

Authors: MohammadHadi Dehghani, Ilirian Ibrahimi

Contributors: Antonio Garmendia, Luca Berardinelli

1

https://www.lowcomote.eu/

Project Abstract

Low-code development platforms (LCDP) are software development platforms on the Cloud, provided
through a Platform-as a-Service model, which allow users to build completely operational applications
by interacting through dynamic graphical user interfaces, visual diagrams and declarative languages.
They address the need of non-programmers to develop personalised software, and focus on their domain
expertise instead of implementation requirements.

Lowcomote will train a generation of experts that will upgrade the current trend of LCPDs to a new
paradigm, Low-code Engineering Platforms (LCEPs). LCEPs will be open, allowing to integrate hetero-
geneous engineering tools, interoperable, allowing for cross-platform engineering, scalable, supporting
very large engineering models and social networks of developers, smart, simplifying the development for
citizen developers by machine learning and recommendation techniques. This will be achieved by injecting
in LCDPs the theoretical and technical framework defined by recent research in Model Driven Engineer-
ing (MDE), augmented with Cloud Computing and Machine Learning techniques. This is possible today
thanks to recent breakthroughs in scalability of MDE performed in the EC FP7 research project MONDO,
led by Lowcomote partners.

The 48-month Lowcomote project will train the first European generation of skilled professionals in
LCEPs. The 15 future scientists will benefit from an original training and research programme merging
competencies and knowledge from 5 highly recognised academic institutions and 9 large and small indus-
tries of several domains. Co-supervision from both sectors is a promising process to facilitate agility of our
future professionals between the academic and industrial world.

Deliverable Abstract

This report presents a collection of concepts for mining Low-code engineering repositories. The entire
mining process is divided into operational-based mining and state-based mining. The former outlines
the concepts, requirements, and approaches for mining users’ operational data produced within low-
code repositories, while the latter outlines the concepts, requirements, and approaches of mining models
themselves. This report also presents a preliminary design and results of an initial mapping study on
different approaches for mining and reusing models. Finally, this report presents two approaches for
operational-based mining and state-based mining, where the theoretical concepts, implementation options,
and proof-of-concept prototypes are presented.

2

Contents

1 Introduction 4
1.1 Problem Statement 4
1.2 Contribution 4
1.3 Structure of the Deliverable 5

2 Background 5
2.1 Operation-based and State-based

Mining in a Nutshell 5
2.2 Motivating Example 6
2.3 Model Reuse: an Initial Mapping Study 7

3 Operation-based Mining 9
3.1 Basic Concepts 9
3.2 Proof of Concept 12

4 State-based Mining 15
4.1 Basic Concepts 15
4.2 Prototypical Implementation 15

5 Conclusion and Future Work 18

A Selected Studies 20

3

1 Introduction

Model-Driven Engineering (MDE) is a method in software engineering that focuses on (semi-)automatic
development of software artifacts from high-level models [1]. Basically, this paradigm relies on the use
of Domain-Specific Modelling Languages (DSMLs) to build such models by using domain concepts. As
a result, the implementation effort is reduced due to the fact that the developer is isolated from the
implementation details.

MDE methodology can be used to build platforms that produce actual software such as Low-code De-
velopment Platforms (LCDPs). For instance, tools such of Google AppSheet [2], Amazon Honeycode [3],
among others [4] are becoming popular given their advantage for rapid development of full-stack appli-
cations without requiring prior programming knowledge. Therefore, some of these platforms targeting
the so-called citizen developers, who have no programming skills. Typically, LCDPs provide a user-friendly
interface (e.g., graphical editors to describe the different parts of the application), integration with third
party systems and cloud development facilities. Due to Gartner [5], in 2024 low-code platforms will be
responsible for the majority of the application development activities.

The EU project Lowcomote aims to enhance LCDPs by transferring knowledge from MDE to improve
low-code development, actually to reach a more systematic low-code engineering. The main Research
Objectives (ROs) of Lowcomote are:

• RO1: Enabling Low-code Engineering of Large-Scale Heterogeneous Systems, by smart development
environments on the Cloud and precise integration of low-code languages with new domains.

• RO2: Developing a Large-scale Repository and Services for Low-Code Engineering, as a Cloud-based
service able to handle a very large number of low-code artefacts, and automatically learn from them.

• RO3: Producing advancements in Scalable Low-Code Artefact Management, as new algorithms and
reusable components.

This deliverable tackles RO2 that focuses on defining approaches for mining low-code engineering reposi-
tories to learn from existing models and interactions. The deliverable proposes i) an initial mapping of the
state-of-the-art, ii) describes two novel Lowcomote approaches, namely state-based and operation-based
approaches, related to mining interaction processes generated by modeling activities on LCDPs.

1.1 Problem Statement

The role of modeling in a LCDP is crucial for the development of the application. This is due to the
fact that most likely all the resources are depicted by using diagrams serialized in the forms of models
(e.g., implementation, architecture and deployment diagrams). Moreover, these diagrams are created
collaboratively and interactively by citizen developers. To do this, these platforms provide multi-faceted
set of User Interfaces (UIs) that are designed to support various tasks such as navigation, restructuring,
debugging, and delegation for different user groups.

On the Need for Operation-based Mining in LCDPs. Usually, LCDPs generally lack mechanisms to
customize the modelling environment. In this sense, we present an approach to adapt the environment to
each user. Our approach is based on extracting information of the user’s past behaviour in order to automate
tasks that improve the usability [6]. Therefore, the motivation is to tame the accidental complexity of such
environments by the customization of the modelling environment per user.

On the Need for State-based Mining in LCDPs. LCDPs also lack mechanisms to reuse fragments of
already designed models. In this context, model reuse may help in reducing the effort to generate new
models. By model reuse we refer to the search for relevant and valid models and model fragments.1 Parts
of such models can be integrated (and thus reused) in other models under construction. However, finding
ways to search and reuse these model elements is still challenging. The aim of the proposed state-based
mining is to facilitate model-level component discovery and reuse through automated identification of
relevant low-code models.

1.2 Contribution

We now explain the three main contributions of this deliverable:
• Initial State-of-the-Art Mapping: We conducted an initial mapping study to collect the relevant

approaches on operational-based mining and state-based mining. As a result, we collected a set of 97
relevant approaches. We present a summary for each approach, for which modeling support activities
(e.g., modeling recommendations, model querying, model clone detection, etc.) they are used, the
techniques they apply, the models they operate on, and their contribution type.

1In this report we consider as model fragments concrete modeling concepts such as classes, attributes, attributes datatypes,
attributes relationships, processes, etc.

4

• Operation-Based Mining Approach: We first introduce basic concepts for capturing, recording, and
using operational data generated by system executions and the recognized formats to abstract these
executions as process models. Then, by presenting a prototypical tool for mining the operational data
generated by a graphical modeling editor we show the feasibility of automatic collection of data from
user interaction histories in LCDPs.

• State-based Mining Approach: We first present the concepts and steps required for state-based
mining. The outlined approach enables modeling recommendations based on mining the state of
models. The state of the models is represented as a weighted graph based on term frequencies and
stored in a graph repository. A proof-of-concept implementation in an existing LCPD is also provided
in this deliverable to demonstrate the feasibility.

1.3 Structure of the Deliverable

The remainder of this deliverable is structured as follows. Section 2 provides the basic background on
operation-based and state-based mining, introduce a running example, and concludes with the initial results
of an ongoing mapping study on model reuse. Section 4 discusses operation-based mining and state-based
mining approaches in detail, respectively, together with a proof-of-concept prototypical implementation in
the low-code engineering domain. Section 5 concludes the deliverable and outlines future work.

2 Background

This section gives first an introduction to operation-based and state-based mining in the context of low-code
engineering, and subsequently, provides are first mapping of existing approaches which may be inputs for
developing operation-based and state-based mining approaches for LCDPs.

2.1 Operation-based and State-based Mining in a Nutshell

All the activities during the work on an LCDP are related to models. Thus, we have separated the mining
process in an LCDP to operational-based mining and state-based mining since these cover the domain of
mining the work on a low-code repository.

Fig. 1 depicts a generic architecture of LCDP, inspired by [7]. It comprises three layers, namely application,
language, and model layers.

The application layer provides access to LCDP’s applications, e.g., model editors. In cloud-based LCDPs,
it may be implemented as services accessed by LCPD users, once logged-in, via advanced Web UIs. The
language layer is typically accessible by language engineers, i.e., skilled LCDP users that knows how to
create or modify LCDP’s underlying languages and processes. In model-driven LCDPs, we may expect
such languages being defined by metamodels and processes as combination of valid models via model
transformations. Finally, the model layer concerns the collection of design models, typically created via
graphical editors provided as LCDP applications.

Operation-based and state-based mining workflows are defined over this generic architecture and de-
tailed in the following.

Operation-Based Mining. In LCDPs and in their generated applications, a huge amount of user inter-
action data can be captured, recorded, and analyzed to validate or improve the development processes
and the generated application. In this report, we focus on enhancing the user experience of applications
generated by LCDPs. Thus, we refer to the user interaction with the application as operation. In Fig. 1, the
operational data is collected in log files and transformed into runtime models (step 7) to be mapped back
to the design model that defines the application (step 8).

State-Based Mining. With the term state, we refer to structural information of a model, typically pro-
vided by the associated metamodel. The state-based mining process is represented in the model layer in
Fig. 1. The design models created by citizen developers (step 3) will be abstracted in a graph-based model
and persisted in a graph repository. This graph serves as a knowledge base that retains all the structural
information of design models and users’ process logs. From the graph model repository, we can extract
different information to support the modeling activity (e.g., model recommendations).

Workflow. Fig. 1 depicts the scenario that comprises all the steps of the development of an applica-
tion in a low-code manner while leveraging both operation-based and state-based mining. The concepts
and tools mentioned below will be introduced later in the following Sections 3-4.

1. The language engineer specifies the metamodels for modeling the application structure and behavior.
2. The language engineer defines the processes to generate the application code from models conforming

to the aforementioned metamodels.
5

creates

generates

Citizen
Developer

Applications (e.g., Editors)

describe

reuse

conform to

transforms into

Log File

updates

Runtime Model

Design
Models

generate

use

Processes

interact

LCDP Users
describes

3

4
5

6

7

8

develops

Language Engineer

specifies

Metamodels

1

2

Language Layer

Model Layer

Application Layer

Legend

step

relation

abstraction
layer

Graph Model
Repository

stores

Figure 1: State-based and operation-based mining workflows in a layered LCDP architecture.

3. The citizen developers, who own the domain knowledge but have limited coding capabilities, creates
their desired design models defining the desired application structure and behavior. The models must
conform to the metamodels defined in Step 1. The design models will be abstracted in a graph-based
model and persisted in a graph repository. This graph serves as a knowledge base that retains all the
structural information of design models and users’ process logs.

4. The processes are run with the design models of the previous step as input. The source-code of the
application is generated automatically based on what was described in the design models.

5. The automatically generated application is ready for usage. The users can interact with the applica-
tions while the interaction history is being recorded.

6. The event data concerning the user interactions are recorded in a log file in XES [8] serialization
format.

7. A process model is mined from the log file [9]. It is a runtime model showing how the users
actually interact with the application and what specific actions they take to do their daily tasks in the
application and in what order these actions are performed.

8. The runtime model is used to update the design models in order to enhance the user experience with
the application based on what was observed from the actual user interaction with the application
Finally, this step is combined again with step 3, mapping operational data mapped back to the design
model. The result is a feedback loop that can be repeated until the application is tailored to the needs
of each user.

2.2 Motivating Example

Fig. 2 sketches a motivating example where mining approaches can be beneficial for LCDPs.
A citizen developer (e.g., Alice) manipulates her design model(s) through a model editor provided

as a software application by her preferred LCDP. Since the LCDP is logically organized as the layered
architecture shown in Fig. 1, it can offer state-based and operation-based mining capabilities.

If an explicit consent is given, the operational data of each logged-in LCDP users can be collected. In
particular, we are interested in modeling actions performed by citizen developers. In our example, Alice
creates her own model with the LCDP graphical model editor and her actions are saved as operational
data in log files. For the sake of illustration purposes, we show the editing actions on class diagram-like
graphical model depicting concepts and relationships typically used in the educational domain (Person,
Student, Professor) and logs are generated collecting the user id, the modeling action (e.g., create), and the
associated model element (e.g., a class, an attribute, a method, or a relationship).

All these logs from citizen developers using available model editors are persisted in a repository
leveraging a common graph-based representation for the sake of homogeneous processing by mining
approaches.

6

AliceModel Editor

recommendations:
(A) postalCode
(A) country
(M) outputAsLabel()

Address

street: String
city: String

validate(): Boolean

Person

name: String
phoneNumber: String

recommendations:
(A) email
(C) Assistant

Student

name: String
phoneNumber: String

+ getID: type

Professor

name: String
phoneNumber: String

+ getID: type

Assistant

postalCode : String

Alice, create, Class, Person
Alice, create, Attribute, name

Alice, create, Attribute, phoneNumber
Alice, create, Class Student

Alice, create, Class, Professor
...

Alice, create, Relationship, Person, Address

design
model

mining approaches

(state-based / operation-based)

Runtime Model

creates

feeds

feeds

recommendations
generate

Figure 2: Motivating example on recommendations provided by mining approaches.

Thanks to the combination of different design models and logs representing the modification history
of the models as performed by citizen developers, the LCPD can offer recommendation services to Alice.
For example, attributes like postal code and country, as well as methods to generate post labels (out-
putAsLabel()) are likely to be associated to concepts like address. Similarly, the email attribute is likely to
be associated to a person. Finally, more domain-specific recommendation can be provided. For example,
since Alice’s design model concerns the educational domain, the specialized class Assistant is suggested as
specialization of the abstract class Person.

Alice can accept or ignore the suggestions provided by the model editor by clicking or not on the
recommendation tips (blue notes in Fig. 2). An LCDP offering mining approaches can then leverage the
knowledge of its users in the generation of its applications

2.3 Model Reuse: an Initial Mapping Study

Figure 3: The mapping study protocol.

In order to collect and study the existing literature on model reuse, we present here a preliminary
design and results of an ongoing mapping study (MS). We focus on model reuse as the main goals of both,
operational and state-based mining is to provide some kind of model reuse features based on previous
knowledge.

Fig. 3 shows the mapping study protocol workflow using an activity diagram like visualization. It is
inspired by guidelines defined by Petersen et al. [10] for performing systematic mapping studies (MS) in
the Software Engineering (SE) domain.

Purpose To identify and classify existing solutions
Issue leveraging model reuse

Object to support citizen developers in the (model-driven) software engineering process based on LCDPs
Viewpoint from the point of view of researchers.

Table 1: Research Goal.

It consists of the following steps:
1. Identifying the Research Goals (RG) and the Research Questions (RQ). The RG is defined using

the Goal-Question-Metric perspective [11], is given in Table 1.
The preliminary research question (RQ) is:

7

RQ: What are the approaches published in the literature concerning reuse of model artifacts?

We expect to formulate more detailed RQs as soon as we proceed in the analysis of selected papers.
2. Search. It is conducted on selected bibliographic sources (ACM2, SCOPUS3, and IEEE Xplore4) via

the execution of search queries.
The search string is designed by identifying and then combining keywords in a logic formula. Two
keyword sets S have been identified in particular:

S1={”LCDP”, ”Low-code development platform”, ”Low-code platform”, ”No-code platform”, ”Model-
Driven Engineering”, ”MDE”, ”Domain-specific modelling”, ”DSM”, ”Domain modeling”}

S2={”Modeling assistance”, ”Modeling assistant”, ”Model reuse”, ”Model recommendation”,
”Model discovery”, ”Recommender system”, ”Model clone detection”}

S1 aims to cover the concepts related to LCDP and domain modeling, while S2 tends to cover the
tasks that enable the reuse of models.
Each keyword k within the same S j is combined in a OR proposition. Then S1 and S2 sets S are
combined in a AND proposition resulting in the following search string:

{”LCDP” OR ”Low-code development platform” OR ”Low-code platform” OR ”No-code platform”
OR ”Model-Driven Engineering” OR ”MDE” OR ”Domain-specific modelling” OR ”DSM” OR
”Domain modeling”} AND {”Modeling assistance” OR ”Modeling assistant” OR ”Model reuse”
OR ”Model recommendation” OR ”Model discovery” OR ”Recommender system” OR ”Model clone
detection”}

A total number of 59 papers have been collected from the bibliographic sources.
3. Papers Selection: Inclusion and Exclusion Criteria (IC/EC) are defined and applied to papers collected

from databases, typically reading their titles and abstracts. The same IC/EC criteria are applied to set
of collected pilot papers and the ones passing the selection are matched against the collected results to
assess the effectiveness of the designed search string(s). Indeed, The higher is the number of matches,
the better is/are the chosen search string(s). The two pilot papers [12, 13] have been found by the
designed search string. Table 2 present the IC/EC criteria for our MS.

Task Criteria

Inclusion
Conference, Journal, Tool papers
Book chapters
Thesis

Exclusion

Not in English
Not accessible
Survey
Discussion paper

Table 2: Inclusion and exclusion criteria

The application of IC/EC resulted in 27 selected studies.
4. Snowballing. We performed the snowballing on the selected papers, until no additional primary

studies were identified and 100 additional relevant papers were added to the selected set to be
reviewed.

5. Data extraction A Result table template has been used to uniformly collect papers’ detailed infor-
mation. Duplicates are removed from the set of collected papers (128) Typically, the application of
IC/EC criteria continues on a full reading basis, and if needed, additional papers are excluded. The
data extraction step has been performed on a total of 95 papers. The template of the result table is
presented in Table 3
.

6. Results. The preliminary result of the mapping study are collected in Table. 5 in Appendix A.
In Fig. 4 we have outlined how the amount of studies in model reuse has increased throughout
the years. There are studies on model reuse from 1995 and the focus on these studies has grown
significantly afterwards. The models are mostly reused by recommendation systems and query

2https://www.acm.org/
3https://www.scopus.com/home.uri
4https://ieeexplore.ieee.org/Xplore/home.jsp

8

Approach Summary Task Technique Model type Contribution type Year

The reference to the

approach

A summary that de-

scribes the approach

Which modeling task

caused the reuse of

models

Which techniques are

applied to perform

model reuse

What model types

can be reused

What is the contribu-

tion type

Year of publication

Table 3: A template table for the LR results

facilities from 2006 and now. In the current state of our mapping study, we have included theses [14,
15, 16, 17, 18] and we excluded surveys [19, 20, 21, 22, 23] and discussion papers [24, 25].

Figure 4: Model reuse studies throughout the years.

3 Operation-based Mining

This section presents operation-based mining which includes a collection of concepts for mining and
mapping operational data back to design models. It also covers the requirements to abstract several
executions of a system in runtime models along with presenting various types of process models used to
describe system executions. Then we discuss automation possibilities for the capture, serialization, and
analysis of operational data in LCDPs by presenting an implementation as proof of concept.

3.1 Basic Concepts

Capturing event data: Modern information systems record detailed events that occur within the system for
later processing and analysis [26]. These systems record each activity (action) of the users on the application.
The recorded data includes details of the performed activities. It usually includes the name, order, duration
of the performed activity, and the resources or users involved in each activity, among others. These records
are called event data [27]. The collection of event data is the core artifact of the mining process, therefore, it
is of high importance to properly collect and record the event data.

9

Table 4: Example event data from a graphical modeling editor application

Case-ID Activity TimeStamp Resource User …… … … … …

…
6824 Create EClass 13:48:21 Ecore U1 …
6824 Set EClass:name 13:48:56 Ecore U1 …
6824 Create EAttribute 13:49:30 Ecore U1 …
6824 Set EAttribute:name 13:49:53 Ecore U1 …
6824 Set Bounds:x 13:50:10 Aird U1 …
6824 Set Bounds:y 13:50:10 Aird U1 …
6824 Create EReference 13:50:48 Ecore U1 …
6824 Set DEdge:target 13:50:48 Aird U1 …
6824 Set EReference:upperBound 13:51:15 Ecore U1 …
6825 Create EClass 14:04:06 Ecore U2 …… … … … …

…

XES Log

Id: String

Trace

Id: String
Event

Id: String

Attribute

key: String
value: String
type: Type

0..*

logs

1..*

traces

1..*

events

0..*

attributes attributes

0..*

attributes

0..*

0..*

attributes

Type

LITERAL
BOOLEAN
DISCRETE
CONTINUOS
TIMESTAMP
DURATION

<<Enumerator>>

Figure 5: XES metamodel

Table 4 shows an example event log which includes a collection of event data captured from Ecore-
Tools [28], which is a graphical modeling editor for the Ecore metamodeling language [29]. This language
was proposed by the Eclipse Modeling Framework (EMF) to design metamodels taking as a reference
Object-Oriented Programming (OOP) concepts. For instance, a class is called EClass in Ecore, an attribute
is called EAttribute and a reference is called EReference. Each row of this table corresponds to an
event that indicates the execution of an activity in a particular process instance which is called a case, and
each column, corresponds to an event attribute. For example, the first event with the Case-ID of 6824
was performed by user U1 on the Ecore resource at 13:48:21. The set of rows comprises a trace. For
example, in the trace for case 6824 the user U1 as a first step creates a class, after that, the user sets the name
of the class, then, creates an attribute and changes the name as well. After these actions, the user continues
by doing some cosmetics on the diagram by changing the width and height of the rectangle that represents
the class (Set Bounds:x and Set Bounds:y). Lastly, the user creates a reference, sets the target, and
updates its upperbound. The events within logs are usually sorted based on execution timestamp [27].
Serializing event logs: Nowadays, the information systems produce huge amounts of event data [30].
These applications require efficient serialization methods, i.e., that saves storage space and memory foot-
print. In addition, the data should be structured, to facilitate analysis and mine the recorded events.
In this regards, there are existing serialization methods that tackle this issue, like XES (eXtensible Event
Stream) [31], Object-Centric Event Logs (OCEL) [32], Mining eXtensible Markup Language (MXML) [33],
among others. As a general rule, process mining tools support one of these standards to process the events.

One of the most prominent standards adopted by IEEE is XES. According to its website [8], up to the
time this deliverable was written there are 18 process mining tools that accept XES format as input. Fig. 5
shows the metamodel of the XES format. As it is depicted, the root class is XES that contains the rest
of elements. Each XES file may contain multiple Logs. Every Log should contain at least one and may
contain several Trace elements. Each Trace includes a non-empty series of Events (activities within a
process). The Attribute element define the properties of Logs, Traces and Events. In addition, each
Attribute has a key which is unique within the same Log, Trace and Event elements, i.e., one Event
cannot have two or more attributes with the same key, but two different Events may have an Attribute
with the same key.
Process mining: A widespread approach to improving an organization’s processes is to analyze event data
generated during execution. Process mining [30] provides techniques, tools, and methods for systematically
analyzing event data to gain insight into how a process is performed. These findings are used to optimize
the process which is the main goal of process mining. Process mining refers to discovering, monitoring,

10

and improving real processes by extracting knowledge from information systems’ event logs [34].
Via process mining, organizations can get an insight into the usage patterns. By analyzing these patterns

the company can detect bottlenecks in the process and resolve them. It is also possible to notice when users
deviate from the normal patterns [30]. As the normal patterns are usually the most efficient way to use
software and they provide the best user experience, the organizations try to encourage the users to interact
with the software based on these patterns.

There are more than 25 commercial tools that support process mining tasks [30] such as ProM [35],
Celenois [36] and Disco [37]. In this derivable, we would like to highlight the ProM [35] tool, because it is
a well-known process mining tool that has been used in many process mining related research studies. It
contains many plugins for different mining purposes, supports common log formats as input, and generates
process models in different formats .

(a) Example BPMN model

(b) Example petri net model

(c) Example process tree model
Figure 6: Three process models describing the same travel permit process taken from [27]

Representation format: Process models make it possible to graphically depict and specify the execution
of a process. There are many recognized process model formats, for example, Business Process Modeling
Notation (BPMN) [38], Petri Net [39], and Process Tree [40]. Fig. 6 shows three different process model
formats that describe the same process. Indeed all the models in Fig. 6 describe the same control flow
of activities, but the expressiveness of the three formalisms is not the same. For example, the BPMN
model specifies that a reminder is sent after 48 hours if no declaration is submitted. Further, the model
indicates which resources are involved in the execution of the different process activities. This kind of
information cannot be presented in the other two formalisms. Most process model formalisms used in
process discovery focus on the control flow perspective, i.e., which activities are present in a process and
how they relate to each other [27]. In addition to control flow perspectives, some process model formats

11

Sirius

interacts modifies
Ecore
Model

Aird
Model

User

attaches
uses

observes changes

generates

Event Plugin

EMF Notification

XES Log File
uses as input discovers

ProM Tools

Process Model

EMF Models

Legend

step

relation

1

2

3

4

Figure 7: Process mining in Sirius graphical editor

include data perspectives or organizational / resource perspectives [41]. For example, BPMN provides
modeling elements (known as swim lanes) to specify the resources involved in performing an activity, as
well as elements to model the flow of data artifacts. However, most process detection algorithms only
present processes in terms of control flow [27]. In addition to the process model format and its graphical
representation, many process detection algorithms limit the classes of models that can be detected within
a particular format. Therefore, these algorithms limit the presentation format of the discovered process
model. For example, some important subclasses of Petri nets play important roles in process discovery,
e.g., Workflow nets (WF-net), sound WF-nets, free-choice WF-nets, and block-structured WF-nets [42, 40].

For example, the ProM tools, contain some miner plugins that generate different types of process models
as their output. Some of the most common miners of ProM are inductive visual miner which produces
process trees, Integer Linear Programming (ILP) miner which produces Petri nets, and Heuristic miner
which produces C-nets.

3.2 Proof of Concept

As proof of concept, we have implemented a mechanism to capture, record, and mine the event data
generated by Sirius graphical modeling editor. We have developed an Eclipse plugin that connects to
Sirius graphical modeling editors and collects event data when the user interacts with the editor. The source
code of the implemented plugin is available on GitHub5.

Fig.7 depicts the workflow of the implemented plugin. First, the users create their desired modeling
project and start designing the models via a graphical modeling editor which is based on Sirius (label 1).
Then our implemented plugin detects the start of a Sirius session and starts listening to the events that are
happening inside that session (label 2). The events are in the form of EMF Notifications and they happen
whenever The Ecore or the Aird models are modified by Sirius. The Ecore model contains the structural
data of the model being designed by the graphical editor and the Aird model contains the graphical data
for the corresponding visual elements on the canvas. After that, the captured events are converted to XES
format and are serialized into an XES log file at the end of the session (label 3). In the end, we load the
generated XES log file into ProM tools and by means of the provided mining algorithms, we discover a
process model describing the interaction of the users with the graphical editor (label 4).

Fig. 8 shows a mined process model from the EcoreTools modeling editor which is an editor based on
Sirius. The log file is captured by our plugin containing multiple user interaction histories when they are
designing the Ecore model shown in Fig. 9. The log file is filtered to only contain the main events related to
the Ecore model and the names of the events have been altered to make them more understandable. This
process model is generated with the inductive visual miner from ProM tools and is in process tree format
but is presented in BPMN style to show the flow of the process with similar notations as BPMN but without
the complex concepts that are available in BPMN. Each node of this model depicts a change happening in a
particular object in the Ecore model which in this example is the creation of that object. If the input log file
contained only a trace from one user, we would get a straight line process tree with no concurrency. The
only observed behavior would be the sequential execution of 7 object creation events in the exact order that
the user has created them. But as we have multiple traces for the same process instance in our log file, the
inductive miner detects that some events can happen in different orders and generates a concurrent process

5https://github.com/lowcomote/sirius.process.mining

12

https://github.com/lowcomote/sirius.process.mining

tree.

+

+

+

+

Create Reference Program -> Rover

Create Reference System -> Program

Create Class Rover

Create Class System

Create Attribute name

Create Class Program

Create Reference System -> Rover

Legend

Exclusive choice

Source

Sink

Concurrency
Events

+

Figure 8: Mined process model from EcoreTools user interaction log captured by our tool

When designing a model, it is more convenient to have a graphical representation of the model, with
the possibility of editing through a drag and drop editor [43]. Sirius is an Eclipse project that allows the
creation of such graphical editors for the Eclipse Modeling Framework (EMF) models [44]. Thanks to it,
users have a reusable way of defining editors, for the IDE Eclipse or the web, by specifying a Viewpoint
Specification Project, without needing to be an expert in programming languages, the Eclipse environment,
or its plugin system [43]. Sirius provides quick development of an editor which lets users graphically define
models of different types, either using an existing metamodel or after specifying one for a certain domain
[45]. It would be possible to specify representations of viewpoints of various natures with Sirius, such as
generic diagrams, edition tables, crosstables, trees, and sequence diagrams [46].

These characteristics make Sirius a good candidate for a domain-specific graphical modeling editor to
be used in LCDPs. Fig.9 depicts a screenshot of the EcoreTools graphical modeling editor which is based
on Sirius. The user interface consists of a canvas that shows the graphical representation of the model, a
palette that contains commands and graphical elements that can be added to the canvas, and the properties
window that let the users modify the details of each element of the model by selecting the corresponding
element on the canvas. As Sirius can generate customized modeling editors from viewpoint specification
models, we can consider the generated editors as low-code applications and apply our operation-based
mining technique to them.

As we leverage EMF Notification API for the observation of the changes but we need the XES format for
serialization, we have developed some code to adapt the EMF Notification objects to XES objects. Listing 1
depicts a Java class that adapts the FeatureChange class from EMF Notification to Event class from XES.
The output of the implemented Eclipse plugin is a log file in XES format. Listing 2 shows a small piece of
one of the generated log files that is then fed to the ProM tools to extract a process model from it.

Figure 9: EcoreTools: graphical modelling editor based on Sirius
13

public class FeatureChangeToEvent extends XEventImpl {

public FeatureChangeToEvent(EObject reference, FeatureChange featureChange,
XFactory factory) {

super();
put("type", "featureChange");
putTime(featureChange.getTimeStamp());
String className = reference.eClass().getName();
String javaClass = reference.eClass().getInstanceClassName();
put("class", className);
put("javaClass", javaClass);
put("featureName", featureChange.getFeatureName());
putName(className + ":" + featureChange.getFeatureName());
put("set", featureChange.isSet());
String dataValue = featureChange.getDataValue();
...

}

}

Listing 1: A java class to adapt EMF FeatureChange objects to XES event objects

<log xes.version="2.0" xes.features="-" openxes.version="2.27">
...
<trace>

...
<event>

...
<string key="featureName" value="eStructuralFeatures"/>
<string key="resource" value="ecore"/>
<string key="javaClass" value="org.eclipse.emf.ecore.EClass"/>
<string key="type" value="featureChange"/>
<date key="time:timestamp" value="2022-01-05T14:23:06.361+01:00"/>
<string key="proxy"

value="platform:/resource/roverml/model/roverml.ecore#//System"/>
<string key="concept:name" value="EClass:eStructuralFeatures"/>
...

</event>
...

...
</trace>

</log>

Listing 2: A piece of the generated XES log file

14

4 State-based Mining

This section presents the state-based mining process which includes a collection of concepts for mining and
reusing the state of the models, i.e., the relevant structural data. It also covers the steps and provides an
approach for reusing models mined based on their structural data. Finally, in this section the integration of
the approach in a LCDP as a proof of concept is presented.

4.1 Basic Concepts

Abstracting the Structural data. One of the main concepts for mining the state of a model is capturing its
relevant structural data and abstracting them in a specific format so they can be accessed afterwards. The
abstraction format will serve as a knowledge base for the entire state-based mining process.

Graph-based repository. The continually increasing amount of information generated by state-based
mining processes poses scalability issues. It is necessary to conveniently persist and access this information
and efficiently access potentially large models.

In [47] Chen conducted a performance comparison between relational databases and graph databases
in handling large-scale social data and demonstrated that graph databases perform better on large-scale
data and have some advantages over relational databases. Also, the comparative analysis of relational
and non-relational databases in the context of performance in Web applications conducted by Franczek et
al. [48] concluded that non-relational databases perform better when reading data. Thus, graph repositories
are a promising technologies for LCDP.

Mining approach Once a convenient solution for data storage is found, the approach consists of the
following three main steps: i) model clone detection, for finding exact or similar models from a repository to
a given model, ii) model querying, for searching for a specific model or model fragment in the repository,
and iii) model recommendations, for supporting the citizen developer with modeling suggestion during the
modeling process.

4.2 Prototypical Implementation

This part presents the concepts and steps of an approach that enables model recommendations based on
model state mining. The approach starts by converting heterogeneous models into graph-based models
and merges them to a single graph-based model which serves as a knowledge graph for the approach. This
knowledge graph is persisted in a graph-based model repository as RDF graphs [49].

During the modeling activity performed by users (e.g., the citizen developer in Fig. 2), the approach
queries the graph repository to compare the models under construction with any model within the graph
repository. The prediction algorithm [50] predicts what could be the next modeling step and recommends
the corresponding modeling steps to the user in a ranked order, e.g., based on term frequencies. The
overview of this approach is given in Fig. 10, showing the steps realizing the model discovery and reuse
based on model-state mining.

As proposed in [51], the model reuse cycle consists in four steps, namely abstraction, selection, specializa-
tion, and integration.

Abstraction. Abstraction is one of the key elements of the reuse cycle [52]. Thus, the abstraction step
is performed by converting heterogeneous models to graph-based models.

It is worth noting that this step has to be suitably implemented for the adopted modeling technology. In
our prototypical implementation, we provided abstraction support for Ecore models6, zAppDev models7,
MoDisco reverse engineered models8, Microsoft Common Data Model 9.

For instance, zAppDev models, a.k.a business objects, are checked (e.g., by adding all necessary URIs)
and then transformed into graph-based models (see step 1 in Fig. 10). Then all zAppDev-based RDF graphs
are merged into a single knowledge graph (step 2), which serves as knowledge base for our approach
and is persisted into a graph database (step 3) for the sake of efficient data management. In order to
enable recommendation algorithms, the knowledge graph is weighted (step 4) based on term occurrence
frequency, by counting how many times relationships occur between pairs of classes. Once the weighting
step is completed, the weighted graph is persisted back, via updates, to the graph repository (step 5).

All the remaining model reuse steps: Selection, Specification and Integration are incorporated in step 6
in Fig. 10.

6https://www.eclipse.org/modeling/emf/
7https://zappdev.com
8https://www.eclipse.org/MoDisco/
9https://docs.microsoft.com/en-us/common-data-model/

15

Heterogeneous
Models

1

RDF Graphs

transformation

Graph
Repository

3

Recommender
API

Model Under
Construction

request

response

6

uses

2 merging

Knowledge
Graph

Weighted
Graph

weighting

4 5
update

4

4

3

5

2

storage

Figure 10: State-based mining approach for model recommendations

Selection. The first step of the selection step is getting the data from the model under construction,
as depicted in Fig. 10 step 6 ”request” part. If the approach is triggered for recommendations for model
elements (e.g., the user clicks any classes or space on the modeling canvas, see Fig. 2) then the approach
gets this data extracted from the model under construction and use it as a query input for getting relevant
recommendations.

It is worth noting that the approach is currently focusing on class recommendations: a recommended
class can optionally includes frequently associated attributes and methods. Class recommendations can
be domain-specific and domain-independent. Indeed the same classes within different domains may have
different relationships, e.g., a class Manager in a bank domain may be related to classes like Bank, Client,
Account, etc, while the same class Manager may be connected to classes like Hospital, Department,
Doctor, or Nurse in the healthcare domain. To automatically determine the domain of the model under
construction, two or more classes are extracted from the model under construction and used to query the
repository for related model names, which in turn help in identifying the model’s domain. If the classes
taken from the model under construction belong to any model name in the repository, then the latter is
consider relevant to suggest recommendations for the model under construction

In case of domain-independent query then the approach searches for class recommendations in the
entire repository rather than only in models with relevant model names.

Once the relevant domain has been determined, we proceed with finding potential model elements to be
reused. Inspired by the work of Agt-Rickauer et al. [53] N-grams have been chosen to realize the prediction
algorithm. In our approach, we used 1-grams, 2-grams, and 3-grams. All of them are in domain-relevant
and domain-independent recommendation scenarios. When user triggers the recommendations for a class
(request part at step 6 Fig. 10), the approach first perform domain-specific and then domain-independent
queries. A list of all related classes are returned, suitably ranked based on their frequency.

Fig. 11 shows the recommendation step in action. The model consists of two classes Trip and Leg as
created by the user. If the recommendation is triggered from the Trip or Leg classes, the approach checks
for any Trip or Leg class, respectively. Since these classes are connected in the same model, the result is
the same regardless from which of these class we asked for recommendations. After finding the Trip (or
Leg) class, the approach generates N-grams to get all the related classes to Trip - Leg (2-grams in this case).
The approach finds all connected classes with the relationship Trip - Leg within the repository and returns
a list of those classes ranked based on their frequencies. Among them, class Fare has the highest weight
and is ranked/shown first in the recommendation list.

Concerning class attributes, the approach can find relevant attributes for a given class. First, the
approach queries the repository for the owning class, all attributes are collected and returned. Existing
attributes are ignored while the others are offered as recommendations to the user.
Specialization. Models in the graph-based repository are agnostic from specific technologies adopted by
the specific modeling editor and, more in general, LCDP platform. The specialization step consists in
translating the recommendation(s), if accepted, from their graph-based representation back to the original
technical space [54] adopted by the model editor offered by the LCDPs.

16

Trip

Leg

Trip

Leg

Fare

PointOf
Interest

FareType

5

4

3

3

4

 1. Fare
2. FareType

 3. PointOfInterest

<<input>>

<<response>>

2-gram

Repository
Legend

 Classes

Relationships

Nr. Classes

Figure 11: Extracting N-grams from the repository

Integration. After the approach has determined possible model elements that can be recommended and
reused based on the inputs received from the model under construction state, the approach proceeds with
the integration part. At the time of writing, the integration step is available on the zAppDev10 LCDP. How-
ever, the integration step is exposed as a REST API to allow other model editors, as those used in LCDPs,
to access its endpoints to get recommendations during the modeling activity. In Fig. 10 the integration part
corresponds to step 6.

The approach and its model reuse cycle (abstraction, selection, specialization, integration) has been im-
plemented in a Java-based proof-of-concept tool called BORA (Business Object Reuse Approach). BORA
adopts RDF as graph-based model format, the TDB11 is a component of Apache Jena for RDF storage and
query, and SPARQL [55, 56] as query language.

BORA can manage zAppDev models, Ecore models, and MoDisco reverse engineered models [57]. Such
models can be abstracted and stored in BORA’s repository and can be reused. It is worth noting that any
other graph-based model can be integrated with BORA12

Due to industrial property rights, zAppDev documents are not publicly available. However, 543 Ecore
models have been collected from the Maven repository13, converted to RDF, merged, and weighted. The
RDF weighted graph obtained from the collected Ecore models can be used for testing recommendations
via BORA.

In order to let other tools access our approach, we exposed BORA as a REST API by using Spring Boot.
By using swagger14 we outlined all endpoints that trigger the functionalities of BORA in a JSON file. So
far, we have integrated BORA to zAppDev LCDP. In order to let zAppDev access BORA (or any other tool),
we had to host BORA encoded as a jar file and also BORAs’ repository in a Linux server.

From the zAppDev perspective, when the users want to use BORA for getting modeling recommenda-
tions (see Fig. 12) they have just to click the ”Business Object Suggester” button on the modeling canvas.
BORA then provides recommendations to the user. Once the user has selected the desired recommended
classes/attributes, they will be automatically integrated into the zAppDev platform. In the class integration
part, not only the classes will be integrated, but also the respective class attributes, connection type, con-
nection name, and also the multiplicity that the recommended and selected class has to the class selected
for recommendations. An overview of BORA used on zAppDev for class recommendations is depicted
in Fig. 12. Up to three classes15 from the current state of the model under construction (a) can be simul-
taneously selected for recommendations. In b) BORA provides recommendations from which user can
perform a multiple selection. The classes selected for recommendation are then integrated together with
all the information available in the repository and shown in the modeling canvas pressing the OK button
(c). Depending on how many classes a user selects to ask for recommendations, the respective N-gram
endpoint is triggered, i.e., one selected class triggers 1-gram endpoint will be triggered, two or three selected

10https://zappdev.com
11https://jena.apache.org/documentation/tdb/
12https://github.com/iliriani/BORA Ecore.
13https://mvnrepository.com/
14https://swagger.io/
15BORA provides 1-gram, 2grams, and 3-grams at the time of writing.

17

classes trigger the 2-gram or 3-gram endpoints, respectively. If the user asks for recommendations without
selecting any class, she receives recommendations for island classes, i.e., disconnected from any other class,
within the respective domain. And finally, if the user presses the ”Suggest attributes” button next to the
”Business Object Suggester”, she receives recommendations for adding attributes within that class.

Figure 12: A screenshot of BORA’s integration with zAppDev

5 Conclusion and Future Work

This deliverable represents the concepts for mining low-code engineering repositories. We have divided the
mining process into two main parts: operation-based mining and state-based mining. We have outlined in
this deliverable the concepts for these parts, we have outlined the state-of-the-art conducting a preliminary
mapping study on model reuse, and finally, we outlined our approaches related to these parts and their
respective proof of concept implementations. Based on the performance of the approaches after the
integration part, we believe that these approaches are promising for future studies on process-based and
state-based mining.

As future work, we aim to combine operation-based mining and state-based mining in order to provide
tailored-made suggestions to the user during the modeling process by considering the users’ logs and the
state of the models. We aim to generate probabilistic graph models that abstract the structural changes
done on a model as operational data for each user.

Moreover, we aim at investigating the potential contributions and challenges of process mining-as-s-
service. It may represent a potential horizontal lightweight integration mechanism across knowledge
bases collected from heterogeneous LCDPs, both in term of targeted application domains and (modeling)
technologies. Nevertheless, process mining-as-a-service, by collecting and analyzing user-related data, is
expected to raise privacy and intellectual property challenges.

18

References

[1] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven
Software Engineering in Practice: Second Edition. Synthesis Lec-
tures on Software Engineering, 2017.

[2] Google. Google AppSheet. https://about.appsheet.com/, 2022.
[3] Amazon. Amazon Honeycode. https://www.honeycode.aws/,

2022.
[4] Davide Di Ruscio, Dimitris Kolovos, Juan de Lara, Alfonso Pieran-

tonio, Massimo Tisi, and Manuel Wimmer. Low-code development
and model-driven engineering: Two sides of the same coin? Soft-
ware and Systems Modeling, 2022.

[5] Paul Vincent, Kimihiko Iijima, Mark Driver, Jason Wong, and Yefim
Natis. Licensed for Distribution Magic Quadrant for Enterprise
Low-Code Application Platforms. pages 1–34, 2019.

[6] Volodymyr Leno, Artem Polyvyanyy, Marlon Dumas, Marcello
La Rosa, and Fabrizio Maria Maggi. Robotic process mining: vi-
sion and challenges. Business & Information Systems Engineering,
63(3):301–314, 2021.

[7] Apurvanand Sahay, Arsene Indamutsa, Davide Di Ruscio, and Al-
fonso Pierantonio. Supporting the understanding and comparison
of low-code development platforms. Proceedings - 46th Euromicro
Conference on Software Engineering and Advanced Applications, SEAA
2020, (August):171–178, 2020.

[8] IEEE 1849-2016 xes standard. https://www.xes-standard.org/, Aug
2021. Accessed: 2022-03-03.

[9] Prom tools. https://www.promtools.org/. Accessed: 2022-03-03.
[10] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson.

Systematic mapping studies in software engineering. In Proceed-
ings of the 12th International Conference on Evaluation and Assessment
in Software Engineering, EASE’08, page 68–77, Swindon, GBR, 2008.
BCS Learning & Development Ltd.

[11] Victor R Basili, Gianluigi Caldiera, and H Dieter Rombach. The
goal question metric approach. Encyclopedia of Software Engineering,
2:528–532, 1994.

[12] Ángel Mora Segura and Juan de Lara. EXTREMO: An Eclipse
plugin for modelling and meta-modelling assistance. Science of
Computer Programming, 2019.

[13] Önder Babur, Loek Cleophas, and Mark van den Brand. Meta-
model clone detection with SAMOS, 2019.

[14] Yanis Hattab. Extending Concern-Oriented Reuse to Existing Mod-
elling Languages. (April), 2020.

[15] Tanumoy Pati, Dennis C. Feiock, and James H. Hill. Proactive
modeling: Auto-generating models from their semantics and con-
straints. SPLASH 2012: DSM 2012 - Proceedings of the 2012 ACM
Workshop on Domain-Specific Modeling, pages 7–12, 2012.

[16] Arvind Nair. Integrating Recommender Systems into Domain Spe-
cific Modeling Tools. ProQuest Dissertations and Theses, (May):120,
2017.

[17] Henning Agt-Rickauer. Supporting Domain Modeling with Au-
tomated Knowledge Acquisition and Modeling Recommendation.
(November 2019):184, 2020.

[18] Gwendal Daniel. Efficient persistence, query, and transformation of
large models. Theses, Ecole nationale supérieure Mines-Télécom
Atlantique, November 2017.

[19] Lissette Almonte, Esther Guerra, Iván Cantador, and Juan de Lara.
Recommender systems in model-driven engineering. Software and
Systems Modeling, 21(1):249–280, 2022.

[20] Michael Fellmann, Novica Zarvic, Dirk Metzger, and Agnes
Koschmider. Requirements catalog for business process model-
ing recommender systems (extended abstract). CEUR Workshop
Proceedings, 1701:44–47, 2016.

[21] Abdullah Imad Abdullah Elkindy. Survey of business pro-
cess modeling recommender systems. masterthesis, Universität
Koblenz-Landau, Universitätsbibliothek, 2019.

[22] Krzysztof Kluza, Mateusz Baran, Szymon Bobek, and Grzegorz
Nalepa. Overview of recommendation techniques in business pro-
cess modeling. volume 1070, pages 46–57, 01 2013.

[23] A. Kusel, J. Schönböck, M. Wimmer, G. Kappel, W. Retschitzegger,
and W. Schwinger. Reuse in model-to-model transformation lan-
guages: are we there yet? Software & Systems Modeling, 14(2):537–
572, May 2015.

[24] Garcia-Dominguez A. and Bencomo N. Non-human modelers:
Challenges and roadmap for reusable self-explanation. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics), 10748 LNCS:161
– 171, 2018. Cited by: 4; All Open Access, Green Open Access.

[25] Angela Barriga, Adrian Rutle, and Rogardt Heldal. AI-powered
model repair: an experience report–lessons learned, challenges,
and opportunities. Software and Systems Modeling, 2022.

[26] Adriano Augusto, Raffaele Conforti, Marlon Dumas, Marcello La
Rosa, Fabrizio Maria Maggi, Andrea Marrella, Massimo Mecella,
and Allar Soo. Automated discovery of process models from event
logs: Review and benchmark. IEEE Transactions on Knowledge and
Data Engineering, 31(4):686–705, 2019.

[27] Daniel Schuster, Sebastiaan J. van Zelst, and Wil M.P. van der Aalst.
Utilizing domain knowledge in data-driven process discovery: A
literature review. Computers in Industry, 137:103612, 2022.

[28] Ecoretools - graphical modeling for ecore. https://www.eclipse.org/
ecoretools/doc/, 2022. Accessed: 2022-03-31.

[29] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternos-
tro. EMF: eclipse modeling framework. Pearson Education, 2008.

[30] Willibrordus Martinus Pancratius van der Aalst. Process Mining:
Data Science in Action. Springer, 2nd edition, 2016.

[31] IEEE standard for extensible event stream (xes) for achieving in-
teroperability in event logs and event streams. Standard, IEEE,
2016.

[32] Ocel standard. http://ocel-standard.org/, 2022. Accessed: 2022-03-
31.

[33] Boudewijn F van Dongen and Wil MP Van der Aalst. A meta model
for process mining data. EMOI-INTEROP, 160:30, 2005.

[34] Wil Van der Aalst, Arya Adriansyah, and Boudewijn van Dongen.
Replaying history on process models for conformance checking
and performance analysis. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 2(2):182–192, 2012.

[35] B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J.
M. M. Weijters, and W. M. P. van der Aalst. The prom framework:
A new era in process mining tool support. In Gianfranco Ciardo
and Philippe Darondeau, editors, Applications and Theory of Petri
Nets 2005, pages 444–454, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

[36] Process mining and execution management software celonis. https:
//www.celonis.com/, 2022. Accessed: 2022-03-31.

[37] Process mining and automated process discovery software for pro-
fessionals - fluxicon disco. https://www.fluxicon.com/disco/, 2022.
Accessed: 2022-03-31.

[38] Michele Chinosi and Alberto Trombetta. Bpmn: An introduction to
the standard. Computer Standards & Interfaces, 34(1):124–134, 2012.

[39] W. M. P. VAN DER AALST. The application of petri nets to
workflow management. Journal of Circuits, Systems and Comput-
ers, 08(01):21–66, 1998.

[40] S.J.J. Leemans. Robust process mining with guarantees. PhD thesis,
Mathematics and Computer Science, May 2017. Proefschrift.

[41] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A.
Reijers. Fundamentals of Business Process Management. Springer, 1
edition, 2013.

[42] van der Aalst W.M.P. Structural characterizations of sound work-
flow nets. Computing Science Reports, (23):18 – 22, 1996.

[43] Francesco Bedini, Ralph Maschotta, and Armin Zimmermann. A
generative approach for creating eclipse sirius editors for generic
systems. In 2021 IEEE International Systems Conference (SysCon),
pages 1–8, 2021.

[44] Eclipse sirius documentation. https://www.eclipse.org/sirius/doc/.
Accessed: 2022-03-23.

[45] Sven Jäger, Ralph Maschotta, Tino Jungebloud, Alexander Wich-
mann, and Armin Zimmermann. Creation of domain-specific lan-
guages for executable system models with the eclipse modeling
project. pages 1–8, 04 2016.

[46] Vladimir Viyović, Mirjam Maksimović, and Branko Perisić. Sirius:
A rapid development of dsm graphical editor. In IEEE 18th In-
ternational Conference on Intelligent Engineering Systems INES 2014,
pages 233–238, 2014.

[47] Yaowen Chen. Comparison of Graph Databases and Relational
Databases When Handling Large-Scale Social Data. page 82, 2016.

[48] Adam Grzech, Leszek Borzemski, Jerzy Świa̧tek, and Zofia Wil-
imowska. Preface. Advances in Intelligent Systems and Computing,
430(October):V–vi, 2016.

[49] Ora Lassila and Ralph R Swick. Resource description framework
(RDF) model and syntax specification. World Wide Web Consor-
tium Recommendation. (October), 1999.

[50] Jimmy Lin. N-Gram Language Models N-Gram Language Models.
2009.

[51] A. Kusel, J. Schönböck, M. Wimmer, G. Kappel, W. Retschitzeg-
ger, and W. Schwinger. Reuse in model-to-model transformation
languages: are we there yet? Software and Systems Modeling, 2015.

[52] Charles W. Krueger. Software reuse. ACM Comput. Surv.,
24(2):131–183, jun 1992.

[53] Henning Agt-Rickauer, Ralf Detlef Kutsche, and Harald Sack. Do-
MoRe – A recommender system for domain modeling. MOD-
ELSWARD 2018 - Proceedings of the 6th International Confer-
ence on Model-Driven Engineering and Software Development, 2018-
Janua(January):71–82, 2018.

[54] Jean Bézivin, Ivan Kurtev, et al. Model-based technology integra-
tion with the technical space concept. In Metainformatics Sympo-
sium, volume 20, pages 44–49. Citeseer, 2005.

[55] Eric Prud’hommeaux and Andy Seaborne. Sparql query language
for rdf. 01 2007.

[56] Bob DuCharme. Learning SPARQL (free chapters). 2013.
[57] Hugo Bruneliere, Jordi Cabot, Grégoire Dupé, and Frédéric Ma-

diot. MoDisco: a Model Driven Reverse Engineering Framework.
Information and Software Technology, 56(8):1012–1032, August 2014.

19

https://about.appsheet.com/
https://www.honeycode.aws/
https://www.xes-standard.org/
https://www.promtools.org/
https://www.eclipse.org/ecoretools/doc/
https://www.eclipse.org/ecoretools/doc/
http://ocel-standard.org/
https://www.celonis.com/
https://www.celonis.com/
https://www.fluxicon.com/disco/
https://www.eclipse.org/sirius/doc/

A Selected Studies

Table 5: Outline of the 97 selected approaches after conducting the MS for finding approaches for enabling
and supporting model reuse.

Approach Summary Model reused by Technique Model type Contribution type Year
[1] Persists all models in a

single model, and uses a
query catalog to facilitate
the search and reuse of
model artifacts.

Query facility Abstraction, OCL * Tool 2018

[2] Presents a meta-model as-
sistant that is capable to per-
sist different source models
and query them in a uni-
form way.

Query facility Abstraction, OCL * Tool 2016

[3] Presents Extremo - an Eclipe
plugin for heterogeneous
model assistence

Query facility Abstraction, OCL * Tool 2019

[4] Presents Moogle, a
metamodel-based model
search engine

Query facility Metamodel information,
Apache Lucene

* Tool 2012

[5] Presents SAMOS, a clone
detection approach by us-
ing N-grams, VSM and
clustering

Clone detection n-grams, VSM, Clustering Ecore Tool 2018

[6] Presents an extension of
SAMOS (Statistical Analy-
sis of MOdelS) to clone de-
tection on Ecore metamod-
els.

Clone detection n-grams, VSM, Clustering Ecore Tool 2019

[7] Uses semantically related
words to predict recom-
mendations.

Recommendation system n-grams Ecore, UML Tool 2018

[8] Present DoMoRe, a domain
model recommendation ap-
proach based on N-grams.

Recommendation system n-grams Ecore, UML Tool 2018

[9] Uses a DSL to configure the
recommender and encodes
models to a utility matrix
for enabling recommenda-
tions.

Recommendation system Abstraction, Utility matrix Ecore Algorithm 2020

[10] Provides proactive model-
ing by combining six dif-
ferent recommendation pa-
rameters.

Recommendation system OCL, action presence-based
recommendation

UML Tool 2021

[11] Explains how to automati-
cally foresees model assis-
tance based on meta-model
constraints

Recommendation system OCL UML Tool 2012

[12] Uses a predefined catalog of
modeling activities.

Recommendation system Predefined catalog of mod-
eling activities

UML Algorithm 2013

[13] Presents RapMOD, a model
auto-completion tool that
transforms model activi-
ties into complex-event pro-
cessing (CEP) rules, per-
forms partial recognition
and pattern comparison.

Recommendation system Complex event patterns
rules, Partial pattern recog-
nition, Pattern comparison

UML Tool 2021

[14] Uses business process min-
ing and distance metrics.

Recommendation system Patterns mining and per-
sisting on DB, Pattern com-
parison

BPM Algorithm 2017

[15] Uses business process min-
ing and distance metrics.

Recommendation system Graph mining, Graph edit
distance (GED)

BPM Algorithm 2012

[16] Uses business process min-
ing and distance metrics.

Recommendation system Process mining, DFS, String
edit distance (SED)

BPM Algorithm 2014

[17] Uses a design science
method and multi-criteria-
based ranking.

Recommendation system Process execution logs BPM Tool 2011

[18] Predicts recommendations
from the meta-models and
their constraints.

Recommendation system ALLOY constraints, CNF
formulas

* Tool 2009

Continued on next page

20

Table 5 – Continued from previous page
Approach Summary Model reused by Technique Model type Contribution Type Year

[19] Algorithm to predict rec-
ommendations from the
meta-models and their con-
straints

Recommendation system Constraint Logic Program-
ming (CLP)

FSM model Algorithm 2007

[20] Using UML hierarchical-
clustering with CACB and
according to semantic sim-
ilarity provide recommen-
dations.

Recommendation system Ant-based hierarchical clus-
tering, semantic similarity

UML Algorithm 2016

[21] Search for UML sequence
diagram to be reused based
on users’ preferences.

Recommendation system CB and BoW algorithm UML Algorithm 2016

[22] Uses a predefined catalog
of modeling activities to
match and provide recom-
mendations.

Recommendation system Activity patterns UML Tool 2014

[23] Uses a combination of three
techniques and a repository
of processes for recommen-
dations.

Recommendation system Process context-based
analysis, pre-and post-
condition analysis, non-
functional property analy-
sis

BPM Algorithm 2008

[24] Uses a business process li-
brary to persist all previ-
ous processes (SQL) and
match the new ones with
the BPL for the recommen-
dation process.

Recommendation system SQL, BPL BPM Tool 2011

[25] Applies process mining by
looking at a process log and
partial execution to predict
future processes.

Recommendation system Process mining of process
log, Partial execution

BPM Tool 2007

[26] A road-map on how to im-
plement three different ML
techniques for process rec-
ommendations for business
processes.

Recommendation system Semantic repository Ma-
chine Learning

BPM Tool 2019

[27] Presents a representation-
based learning method to
train the extracted relations
and predicts recommenda-
tions for business process
models.

Recommendation system Representation learning,
Vector space

BPM Tool 2018

[28] Provides model recommen-
dations based on the meta-
model constraints - proac-
tive modeling technique.

Recommendation system Metamodel syntax OCL UML, EMF Tool 2017

[22] Predicts recommendations
from the meta-models and
their constraints.

Recommendation system Prolog constraint solver FSM model Tool 2007

[30] Provides business process
recommendations based on
their keywords and by
adding term frequency and
structural correctness fre-
quency.

Query facility Keywords, Term frequency,
Structural correction fre-
quency

BPM Tool 2008

[31] Provides a heterogeneous
model discovery frame-
work for building business
process models.

Query facility Enterprise ontology, Graph
theory - digraphs

* Tool 2007

[32] Provides a set of business
process patterns that can be
reused through some algo-
rithms.

Recommendation system Process patterns BPM Tool 2013

[33] Describes a business pro-
cess modeling editor, which
assists users in purpose-
oriented modeling of pro-
cesses. It uses queries and
process tagging for recom-
mendations

Query facility User Profiles Process tag-
ging

BPM Tool 2011

[34] Uses Bayesian Networks to
provide recommendations
on business process model-
ing

Recommendation system Bayesian networks BPM Algorithm 2013

Continued on next page

21

Table 5 – Continued from previous page
Approach Summary Model reused by Technique Model type Contribution Type Year

[35] Provides a data model for
abstracting business pro-
cess data for using recom-
mendation systems.

Recommendation system Data model BPM Tool 2016

[36] Provides an extensible
framework for model
recommendations.

Recommendation system Integration of Rec. strate-
gies, WordWeb

EMF, UML Tool 2013

[37] Provides a framework for
model recommendations,
the requirements, architec-
ture and tool support.

Recommendation system Integration of Rec. strate-
gies

EMF, UML Tool 2014

[38] Provides a repository for
model-driven develop-
ment.

Query facility Drupal content manage-
ment platform

* Tool 2012

[15] Provides a proactive model-
ing technique by using the
model semantics and con-
straints

Recommendation system OCL EMF, UML Tool 2012

[40] Describes how OCL can be
adapted and leveraged to
guide users toward correct
solutions using visual cues.

Recommendation system OCL Batch processes Tool 2008

[16] Provides the integration
of recommendation sys-
tems into the domain-
specific modeling tool.

Recommendation system OCL EMF, UML Tool 2017

[42] Presents an approach based
on a pre-trained language
model for providing meta-
model concepts recommen-
dations.

Recommendation system Pre-trained lamguage
model

Ecore Approach 2022

[43] A structure-based search
engine for heterogeneous
models.

Query facility Indexing, Bag of paths * Tool 2020

[44] Presents an approach for
recommending Simulink li-
braries elements for DSL.
It uses data mining tech-
niques and compares them:
association rules and collab-
orative filtering.

Recommendation system Data mining MATLAB/Simulink Algorithm 2012

[45] Uses graph theory for auto-
matic detection of clones in
large models. Here the ap-
proach is implemented for
MATLAB/Simulink model
clone detection.

Clone detection Graph theory, Similarity
heuristics

MATLAB/Simulink Tool 2008

[46] A clone detection tool for
MATLAB/Simulink mod-
els. The core of ModelCD
is based on two novel
graph-based clone detec-
tion algorithms: eScan and
aScan.

Clone detection Graph theory, sScan, aScan MATLAB/Simulink Tool 2009

[47] A graph-based approach for
UML clone detection

Clone detection Similarity heuristics. UML Tool 2011

[48] A tool based on graph the-
ory for Simulink clone de-
tection inspection.

Clone detection Graph theory MATLAB/Simulink Tool 2010

[49] Presents an indexing struc-
ture for business process
model clone detection. It
is based on graph canon-
ization and string matching
techniques.

Clone detection Indexing, Graph Canoniza-
tion

BPM Algorithm 2011

[50] Uses graph-theory tech-
niques for parsing business
models to graphs and de-
tecting clones.

Clone detection Graph theory BM Algorithm 2012

Continued on next page

22

Table 5 – Continued from previous page
Approach Summary Model reused by Technique Model type Contribution Type Year

[51] Propose an indexing struc-
ture(RPSDAG) for clone de-
tection in process model
repositories with model
decomposition based on
graph canonization and
string matching.

Clone detection Decompose into SESE
Graph canonization

BPM Algorithm 2013

[52] An approach for UML clone
detection. Converts UML
to XMI. The similarity be-
tween the two fragments is
reported as a clone.

Clone detection Subtree comparison UML Algorithm 2012

[53] Presents a clone detection
algorithm for UML domain
models based on similarity
heuristics.

Clone detection Similarity heuristics UML Tool 2015

[54] Proposes an optimized
path-based model clone de-
tection algorithm (OPMCD)
for MATLAB/SIMULINK
models.

Clone detection Graph theory MATLAB/SIMULINK Algorithm 2014

[55] A knowledge-based recom-
mender system based on
property graphs and meta
graphs. It also provides a
schema for model recom-
mendation production for
operation-based model rec-
ommenders

Recommendation system Property graphs UML, EMF Tool 2018

[56] Present the design and con-
struction of a model reuse
repository

Query facility Domain-specific software
architecture

Not specified Tool 1995

[57] Presents a framework on
how to achieve disciplined
reuse and evolution of UML
model components by reuse
contracts.

Not specified Disciplined reuse /Reuse
contract

UML Concept 1998

[58] Propose a metamodel pack-
age assembly called reuse
and generalize based on
MOF.

Import MOF UML Concept 2005

[59] Explains how to provide
context-aware domain
model recommendations
based on the semantic
relation of terms.

Recommendation system N-grams, Term Semantic re-
lated network

EMF Approach 2020

[60] Depicts the idea of a refer-
ence framework for build-
ing an intelligent modeling
assistant - RF-IMA.

Recommendation system Not specified * Concept 2020

[61] Present a detailed, level-
wise definition for the prop-
erties of RF-IMA to enable a
better understanding, com-
parison, and selection of ex-
isting and future IMAs.

Recommendation system Not specified * Concept 2020

[62] Proposes an approach to
seamlessly integrate mi-
cro machine learning units
into domain modeling, ex-
pressed in a single type of
model, based on one mod-
eling language.

Recommendation system ML Own modeling
language

Algorithm 2019

[63] Presents a plan for devel-
oping an modeling assistant
and investigating its sup-
port to the modeler.

Recommendation system AI Not specified Concept 2019

[64] Presents the integration of
Hawk with ECL.

Query facility ECL, Hawk EMF Tool 2014

[65] Provides an outline of the
main scalability challenges
in MDE, including scalable
repositories and queries.

Query facility ECL, Hawk EMF, UML Concept 2015

Continued on next page

23

Table 5 – Continued from previous page
Approach Summary Model reused by Technique Model type Contribution Type Year

[66] Provided a model persis-
tence framework that en-
ables model storage into
multiple data sources.

Query facility ECL, Hawk EMF Tool 2017

[18] Presents a scalable mod-
eling framework by pro-
viding a persistence frame-
work, an efficient query ap-
proach, and a model trans-
formation solution

Query facility OCL, NeoEmf EMF, UML Algorithm 2017

[68] Presents a tool
SYSML2RSHP that ab-
stracts SysML model to
the relationship model
(XML), indexes them, and
is capable to query them.

Query facility CAKE Framework SysML Tool 2017

[69] Examines two different
techniques for indexing
and searching model repos-
itories, with a focus on
Web development projects
encoded in a DSL.

Query facility Indexing, TF/IDF, Graph
theory/ A*

WebML/XML Algorithm 2014

[70] Explore the use of graph-
based similarity search as a
tool for expressing queries
over model repositories,
uniformly represented
as collections of labeled
graphs.

Query facility Graph theory/A* WebML/XML Algorithm 2011

[71] Outlines an approach on
how to query UML model
using OCL.

Query facility OCL UML Concept 2001

[72] Investigates the use of clas-
sical Information Retrieval
techniques for easing the
discovery of useful infor-
mation from past projects.

Query facility Indexing IR techniques WebML/XML Algorithm 2010

[73] Studies the problem of
querying UML class dia-
grams.

Query facility Datalog UML Concept 2012

[74] Present CORE - collabo-
rative ontology reuse and
evaluation tool.

Query facility NLP techniques OWL Tool 2006

[75] Outlines a novel approach
to model search that lever-
ages the repository struc-
ture into a megamodel.

Query facility MDEForge, Lucene, OCL,
Megamodel

EMF Tool 2018

[76] Presents a DSL for model
querying and manipulation
- MoScript.

Query facility OCL, Megamodel * Tool 2011

[77] Uses LinkedIn profiles to
provide recommendations
for BP modeling.

Recommendation system LinkedIn, ATL BP Algorithm 2020

[78] Presents the challenges for
reuse in collaborative mod-
eling environment.

Query facility Not specified Not specified Concept 2018

[79] Presents a canonical set of
reuse interfaces applicable
for different artifacts.

Not specified Not specified Not specified Concept 2016

[14] Presents how to improve
the support for modeling
reuse and language tai-
loring by extending the
Concern Oriented Reuse
(CORE) modeling frame-
work.

Query facility Concern oriented EMF Tool 2020

[81] Presents SIMONE-an adap-
tation of the mature text-
based code clone detec-
tor NICAD to the effi-
cient identification of struc-
turally meaningful near-
miss subsystem clones in
graphical models.

Clone detection NICAD MATLAB/SIMULINK Tool 2012

Continued on next page

24

Table 5 – Continued from previous page
Approach Summary Model reused by Technique Model type Contribution Type Year

[82] Presents a clone detec-
tion approach for embed-
ded systems relying on the
semantic equivalence (not
syntactic) based on graph
transformation.

Clone detection Graph transformation MATLAB/SIMULINK,
ASCET-SD, Esterel,
Lustre

Algorithm 2011

[83] Provides techniques for ap-
proximate clone detection
based on clustering algo-
rithms.

Clone detection DBSCAN, HAC BPM Approach 2015

[84] Presents an approach
for identifying near-miss
interaction clones in
reverse-engineered UML
behavioural models.

Clone detection NICAD UML, BM Algorithm 2013

[85] Presents a model clone ap-
proach used for code clone
detection. This approach
uses the CK Metrics suite
for clone detection.

Clone detection CK Metrics Suite Not specified Approach 2015

[86] Provides an extensible
framework for model rec-
ommendations. Explains
the architecture on how
to integrate different UIs
and recommendations
strategies.

Recommendation system WordWeb Ecore Tool 2013

[87] Provides a model library
approach to improve the
quality of models so they
can be reused.

Recommendation system Graphs, Quality dimen-
sions

UML Tool 2015

[88] Explains the integration of
”reuse contracts” to enable
model reuse and evolution.

Not specified Reuse contract UML Concept 1998

[89] Introduces the concept of
model Library to store the
reused model artifacts.

Not specified Library concept Not specified Concept 2010

[90] Provides an approach for
isolating and reusing tem-
plate instances of UML.

Not specified Templates, OCL UML Tool 2016

[91] Present an approach of
reusing models of different
overlapping concepts but
which should have the same
meta-model.

Not specified Model transformation UML Approach 2002

[92] Outlines the concept of
building a virtual modeling
assistant based on clone de-
tection and matching.

Clone detection ML Simone clone detection MATLAB/SIMULINK Concept 2019

[93] Presents the main proper-
ties that have to be taken
into account for assessing
and comparing IMAs.

Not specified Not specified * Concept 2020

[94] A GNN-based recom-
mender system for facilitat-
ing the modeling process by
assisting the specification
of metamodels and models.

Recommendation system ML, Graph-kernel * Approach 2021

[95] Presents an approach for
reusing type-safe templates
on a low-code platform
(Outsystems).

Screen templates Type safe template lan-
guage.

Outsytem mod. Approach 2021

25

Appendix References

[1] Mora Segura Ángel, Juan de Lara, Patrick Neubauer, and Manuel
Wimmer. Automated modelling assistance by integrating hetero-
geneous information sources. Computer Languages, Systems & Struc-
tures, 53:90–120, 2018.

[2] Mora Segura A., Pescador A., De Lara J., and Wimmer M. An
extensible meta-modelling assistant. page 79 – 88, 2016. Cited by:
11.

[3] Ángel Mora Segura and Juan de Lara. EXTREMO: An Eclipse
plugin for modelling and meta-modelling assistance. Science of
Computer Programming, 2019.

[4] Daniel Lucrédio, Renata P. de M. Fortes, and Jon Whittle.
MOOGLE: a metamodel-based model search engine. Software &
Systems Modeling, 11(2):183–208, May 2012.

[5] Önder Babur. Clone Detection for Ecore Metamodels using N-
grams:. In Proceedings of the 6th International Conference on Model-
Driven Engineering and Software Development, pages 411–419, Fun-
chal, Madeira, Portugal, 2018. SCITEPRESS - Science and Technol-
ogy Publications.

[6] Önder Babur, Loek Cleophas, and Mark van den Brand. Meta-
model clone detection with SAMOS, 2019.

[7] Henning Agt-Rickauer, Ralf-Detlef Kutsche, and Harald Sack. Au-
tomated recommendation of related model elements for domain
models. In MODELSWARD, 2018.

[8] Henning Agt-Rickauer, Ralf-Detlef Kutsche, and Harald Sack. Do-
MoRe – A Recommender System for Domain Modeling:. In Proceed-
ings of the 6th International Conference on Model-Driven Engineering
and Software Development, pages 71–82, Funchal, Madeira, Portugal,
2018. SCITEPRESS - Science and Technology Publications.

[9] Lissette Almonte, Iván Cantador, Esther Guerra, and Juan de Lara.
Towards automating the construction of recommender systems
for low-code development platforms. In Proceedings of the 23rd
ACM/IEEE International Conference on Model Driven Engineering Lan-
guages and Systems: Companion Proceedings, pages 1–10, Virtual
Event Canada, October 2020. ACM.

[10] Arvind Nair, Xia Ning, and James H. Hill. Using recommender
systems to improve proactive modeling. Software and Systems Mod-
eling, 20(4):1159–1181, August 2021.

[11] Tanumoy Pati, Dennis C. Feiock, and James H. Hill. Proactive
modeling: auto-generating models from their semantics and con-
straints. In Proceedings of the 2012 workshop on Domain-specific mod-
eling - DSM ’12, page 7, Tucson, Arizona, USA, 2012. ACM Press.

[12] Tobias Kuschke and Patrick Mäder. Pattern-based auto-completion
of UML modeling activities. In Proceedings of the 29th ACM/IEEE
international conference on Automated software engineering, pages 551–
556, Vasteras Sweden, September 2014. ACM.

[13] Patrick Mader, Tobias Kuschke, and Mario Janke. Reactive Auto-
Completion of Modeling Activities. IEEE Transactions on Software
Engineering, 47(7):1431–1451, July 2021.

[14] Shuiguang Deng, Dongjing Wang, Ying Li, Bin Cao, Jianwei Yin,
Zhaohui Wu, and Mengchu Zhou. A Recommendation System to
Facilitate Business Process Modeling. IEEE Transactions on Cyber-
netics, 47(6):1380–1394, June 2017.

[15] Bin Cao, Jianwei Yin, Shuiguang Deng, Dongjing Wang, and Zhao-
hui Wu. Graph-based workflow recommendation: on improving
business process modeling. In Proceedings of the 21st ACM inter-
national conference on Information and knowledge management - CIKM
’12, page 1527, Maui, Hawaii, USA, 2012. ACM Press.

[16] Ying Li, Bin Cao, Lida Xu, Jianwei Yin, Shuiguang Deng, Yuyu Yin,
and Zhaohui Wu. An efficient recommendation method for im-
proving business process modeling. IEEE Transactions on Industrial
Informatics, 10(1):502–513, 2014.

[17] Mukhammad Andri Setiawan, Shazia Wasim Sadiq, and Ryan
Kirkman. Facilitating business process improvement through per-
sonalized recommendation. In BIS, 2011.

[18] Sagar Sen, Benoit Baudry, and Doina Precup. Partial model comple-
tion in model driven engineering using constraint logic program-
ming. In International Conference on the Applications of Declarative
Programming, 2007.

[19] Sagar Sen, Benoı̂t Baudry, and Doina Precup. Partial model com-
pletion in model driven engineering using constraint logic pro-
gramming. 2007.

[20] Akil Elkamel, Mariem Gzara, and Hanene Ben-Abdallah. An UML
class recommender system for software design. In 2016 IEEE/ACS
13th International Conference of Computer Systems and Applications
(AICCSA), pages 1–8, Agadir, Morocco, November 2016. IEEE.

[21] Thaciana G. O. Cerqueira, Franklin Ramalho, and Leandro Balby
Marinho. A Content-Based Approach for Recommending UML
Sequence Diagrams. pages 644–649, July 2016.

[22] Tobias Kuschke and Patrick Mäder. Pattern-based auto-completion
of uml modeling activities. In Proceedings of the 29th ACM/IEEE In-
ternational Conference on Automated Software Engineering, ASE ’14,
page 551–556, New York, NY, USA, 2014. Association for Comput-
ing Machinery.

[23] Matthias Born, Christian Brelage, Ivan Markovic, Daniel Pfeiffer,
and Ingo Weber. Auto-completion for executable business pro-
cess models. Lecture Notes in Business Information Processing, 17
LNBIP:510–515, 2009.

[24] Karol Wieloch, Agata Filipowska, and Monika Kaczmarek. Auto-
completion for business process modelling. In Witold Abramow-
icz, Leszek Maciaszek, and Krzysztof Wkecel, editors, Business In-
formation Systems Workshops, pages 30–40, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[25] Helen Schonenberg, Barbara Weber, Boudewijn Van Dongen, and
Wil Van Der Aalst. Supporting flexible processes through recom-
mendations based on history. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 5240 LNCS(2007):51–66, 2008.

[26] Emanuele Laurenzi, Knut Hinkelmann, Stephan Jüngling, De-
vid Montecchiari, Charuta Pande, and Andreas Martin. Towards
an Assistive and Pattern Learning-driven Process Modeling Ap-
proach. In AAAI Spring Symposium: Combining Machine Learning
with Knowledge Engineering, page 6, 2019.

[27] Huaqing Wang, Lijie Wen, Li Lin, and Jianmin Wang. Rl-
recommender: A representation-learning-based recommendation
method for business process modeling. In Claus Pahl, Maja
Vukovic, Jianwei Yin, and Qi Yu, editors, Service-Oriented Comput-
ing, pages 478–486, Cham, 2018. Springer International Publishing.

[28] Tanumoy Pati, Sowmya Kolli, and James H. Hill. Proactive mod-
eling: a new model intelligence technique. Software & Systems
Modeling, 16(2):499–521, May 2017.

[29] Sagar Sen, Benoit Baudry, and Hans Vangheluwe. Domain-specific
model editors with model completion. volume 5002, pages 259–
270, 09 2007.

[30] Thomas Hornung, Agnes Koschmider, and Georg Lausen. Recom-
mendation Based Process Modeling Support: Method and User
Experience. In Qing Li, Stefano Spaccapietra, Eric Yu, and An-
toni Olivé, editors, Conceptual Modeling - ER 2008, pages 265–278,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[31] Aditya Ghose, George Koliadis, and Arthur Chueng. Process Dis-
covery from Model and Text Artefacts. In 2007 IEEE Congress on
Services (Services 2007), pages 167–174, Salt Lake City, UT, USA,
July 2007. IEEE.

[32] Agnes Koschmider and Hajo A. Reijers. Improving the process of
process modelling by the use of domain process patterns. Enterprise
Information Systems, 9(1):29–57, January 2015.

[33] Agnes Koschmider, Thomas Hornung, and Andreas Oberweis.
Recommendation-based editor for business process modeling.
Data & Knowledge Engineering, 70(6):483–503, June 2011.

[34] Szymon Bobek, Mateusz Baran, Krzysztof Kluza, and Grzegorz J
Nalepa. Application of Bayesian Networks to Recommendations
in Business Process Modeling. In AIBP@ AI∗ IA, pages 41–50, 2013.

[35] Michael Fellmann, Dirk Metzger, and Oliver Thomas. Data model
development for process modeling recommender systems. Lecture
Notes in Business Information Processing, 267:87–101, 2016.

[36] Andrej Dyck, Andreas Ganser, and Horst Lichter. Enabling
Model Recommenders for Command-Enabled Editors. In
MDEBE@MoDELS, 2013.

[37] Andrej Dyck, Andreas Ganser, and Horst Lichter. A framework
for model recommenders requirements, architecture and tool sup-
port. In MODELSWARD 2014 - Proceedings of the 2nd International
Conference on Model-Driven Engineering and Software Development,
2014.

[38] Robert B. France, James M. Bieman, Sai Pradeep Mandalaparty,
Betty H. C. Cheng, and Adam Jensen. Repository for Model Driven
Development (ReMoDD). In 2012 34th International Conference on
Software Engineering (ICSE), pages 1471–1472, Zurich, June 2012.
IEEE.

[39] Tanumoy Pati, Dennis C. Feiock, and James H. Hill. Proactive
modeling: Auto-generating models from their semantics and con-
straints. SPLASH 2012: DSM 2012 - Proceedings of the 2012 ACM
Workshop on Domain-Specific Modeling, pages 7–12, 2012.

[40] Jules White, D.C. Schmidt, Andrey Nechypurenko, and Egon
Wuchner. Model intelligence: an approach to modeling guidance.
Upgrade, 9(2):22–28, 2008.

[41] Arvind Nair. Integrating Recommender Systems into Domain Spe-
cific Modeling Tools. ProQuest Dissertations and Theses, (May):120,
2017.

[42] Martin Weyssow, Houari Sahraoui, and Eugene Syriani. Recom-
mending metamodel concepts during modeling activities with pre-
trained language models. Software and Systems Modeling, February
2022.

[43] José Antonio Hernández López and Jesús Sánchez Cuadrado.
MAR: a structure-based search engine for models. In Proceedings
of the 23rd ACM/IEEE International Conference on Model Driven Engi-
neering Languages and Systems, pages 57–67, Virtual Event Canada,
October 2020. ACM.

[44] Lars Heinemann. Facilitating reuse in model-based development
with context-dependent model element recommendations. In 2012
Third International Workshop on Recommendation Systems for Software
Engineering (RSSE), pages 16–20, Zurich, Switzerland, June 2012.
IEEE.

[45] Florian Deissenboeck, Benjamin Hummel, Elmar Jürgens, Bern-
hard Schätz, Stefan Wagner, Jean-François Girard, and Stefan
Teuchert. Clone detection in automotive model-based develop-
ment. In Proceedings of the 13th international conference on Software
engineering - ICSE ’08, page 603, Leipzig, Germany, 2008. ACM
Press.

26

[46] Nam H. Pham, Hoan Anh Nguyen, Tung Thanh Nguyen, Jafar M.
Al-Kofahi, and Tien N. Nguyen. Complete and accurate clone
detection in graph-based models. In 2009 IEEE 31st International
Conference on Software Engineering, pages 276–286, Vancouver, BC,
Canada, 2009. IEEE.

[47] Harald Störrle. Towards clone detection in uml domain models.
Software & Systems Modeling, 12:307–329, 2011.

[48] Florian Deissenboeck, Benjamin Hummel, and Elmar Juergens.
Code clone detection in practice. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - ICSE
’10, volume 2, page 499, Cape Town, South Africa, 2010. ACM
Press.

[49] Reina Uba, Marlon Dumas, Luciano Garcı́a-Bañuelos, and Mar-
cello La Rosa. Clone Detection in Repositories of Business Process
Models. In Stefanie Rinderle-Ma, Farouk Toumani, and Karsten
Wolf, editors, Business Process Management, pages 248–264, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[50] Chathura C. Ekanayake, Marlon Dumas, Luciano Garcı́a-Bañuelos,
Marcello La Rosa, and Arthur H.M. Ter Hofstede. Approximate
clone detection in repositories of business process models. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics), 7481 LNCS:302–
318, 2012.

[51] Marlon Dumas, Luciano Garcı́a-Bañuelos, Marcello La Rosa, and
Reina Uba. Fast detection of exact clones in business process model
repositories. Information Systems, 38(4):619–633, June 2013.

[52] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. Model
clone detection based on tree comparison. In 2012 Annual IEEE
India Conference (INDICON), pages 1041–1046, Kochi, India, De-
cember 2012. IEEE.

[53] Harald Störrle. Effective and Efficient Model Clone Detection, pages
440–457. Springer International Publishing, Cham, 2015.

[54] Zhengping Liang, Yiqun Cheng, and Jianyong Chen. A Novel Op-
timized Path-Based Algorithm for Model Clone Detection. Journal
of Software, 9(7):1810–1817, July 2014.

[55] Andreas Ganser. Operation-Based Model Recommenders. Shaker Ver-
lag GmbH, DE, 1 edition, 2018.

[56] J. Petro, M.E. Fotta, and D.B. Weisman. Model-based reuse
repositories-concepts and experience. In Proceedings Seventh In-
ternational Workshop on Computer-Aided Software Engineering, pages
60–69, Toronto, Ont., Canada, 1995. IEEE Comput. Soc. Press.

[57] Tom Mens, Carine Lucas, and Patrick Steyaert. Supporting disci-
plined reuse and evolution of uml models. In UML, 1998.

[58] Xavier Blanc, Franklin Ramalho, and Jacques Robin. Metamodel
reuse with MOF. Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), 3713 LNCS:661–675, 2005.

[59] Henning Agt-Rickauer. Supporting domain modeling with au-
tomated knowledge acquisition and modeling recommendations.
2020. Publisher: Technische Universität Berlin.

[60] Gunter Mussbacher, Benoit Combemale, Jörg Kienzle, Silvia
Abrahão, Hyacinth Ali, Nelly Bencomo, Márton Búr, Loli Bur-
gueño, Gregor Engels, Pierre Jeanjean, Jean Marc Jézéquel, Thomas
Kühn, Sébastien Mosser, Houari Sahraoui, Eugene Syriani, Dániel
Varró, and Martin Weyssow. Opportunities in intelligent modeling
assistance. Software and Systems Modeling, (June), 2020.

[61] Gunter Mussbacher, Benoit Combemale, Silvia Abrahão, Nelly
Bencomo, Loli Burgueño, Gregor Engels, Jörg Kienzle, Thomas
Kühn, Sébastien Mosser, Houari Sahraoui, and Martin Weyssow.
Towards an assessment grid for intelligent modeling assistance.
Proceedings - 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, MODELS-C 2020 - Com-
panion Proceedings, pages 296–305, 2020.

[62] Thomas Hartmann, Assaad Moawad, François Fouquet, and
Yves Le Traon. The next evolution of mde: a seamless integration
of machine learning into domain modeling. Software & Systems
Modeling, 18:1285–1304, 2017.

[63] Maxime Savary-Leblanc. Improving MBSE Tools UX with AI-
Empowered Software Assistants. In 2019 ACM/IEEE 22nd Inter-
national Conference on Model Driven Engineering Languages and Sys-
tems Companion (MODELS-C), pages 648–652, Munich, Germany,
September 2019. IEEE.

[64] Konstantinos Barmpis and Dimitrios S. Kolovos. Towards scalable
querying of large-scale models. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 2014.

[65] Dimitrios S Kolovos, Louis M Rose, Richard F Paige, Esther M
Guerra, Jesús Sánchez Cuadrado, Juan M De Lara, István Ráth,
Dániel Varró, Gerson Sunyé, and Massimo Tisi. MONDO: Scalable
Modelling and Model Management on the Cloud. In STAF2015
Project Showcase, L’Aquila, Italy, 2015.

[66] Gwendal Daniel, Gerson Sunyé, Amine Benelallam, Massimo Tisi,
Yoann Vernageau, Abel Gómez, and Jordi Cabot. NeoEMF: A
multi-database model persistence framework for very large mod-
els. Science of Computer Programming, 149:9–14, December 2017.

[67] Gwendal Daniel. Efficient persistence, query, and transformation of
large models. Theses, Ecole nationale supérieure Mines-Télécom
Atlantique, November 2017.

[68] Roy Mendieta, Jose Luis de la Vara, Juan Llorens, and Jose Marı́a
Álvarez Rodrı́guez. Towards Effective SysML Model Reuse:. In

Proceedings of the 5th International Conference on Model-Driven Engi-
neering and Software Development, pages 536–541, Porto, Portugal,
2017. SCITEPRESS - Science and Technology Publications.

[69] Bojana Bislimovska, Alessandro Bozzon, Marco Brambilla, and
Piero Fraternali. Textual and Content-Based Search in Repositories
of Web Application Models. ACM Transactions on the Web, 8(2):1–47,
March 2014.

[70] Bojana Bislimovska, Alessandro Bozzon, Marco Brambilla, and
Piero Fraternali. Graph-Based Search over Web Application Model
Repositories. In Sören Auer, Oscar Dı́az, and George A. Pa-
padopoulos, editors, Web Engineering, volume 6757, pages 90–104.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. Series Title:
Lecture Notes in Computer Science.

[71] D. H. Akehurst and B. Bordbar. On querying UML data models
with OCL. Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
2185:91–103, 2001.

[72] Alessandro Bozzon, Marco Brambilla, and Piero Fraternali. Search-
ing repositories of web application models. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 6189 LNCS(July):1–15, 2010.

[73] Andrea Calı̀, Georg Gottlob, Giorgio Orsi, and Andreas Pieris.
Querying uml class diagrams. In FoSSaCS, 2012.

[74] Miriam Fernández, Iván Cantador, and Pablo Castells. Core: A tool
for collaborative ontology reuse and evaluation. In EON@WWW,
2006.

[75] Francesco Basciani, Davide Di Ruscio, Juri Di Rocco, Ludovico
Iovino, and Alfonso Pierantonio. Exploring model repositories
by means of megamodel-aware search operators. CEUR Workshop
Proceedings, 2245:793–798, 2018.

[76] Wolfgang Kling, Frédéric Jouault, Dennis Wagelaar, Marco Bram-
billa, and Jordi Cabot. MoScript: A DSL for Querying and Manip-
ulating Model Repositories. In David Hutchison, Takeo Kanade,
Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C.
Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bern-
hard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar,
Moshe Y. Vardi, Gerhard Weikum, Anthony Sloane, and Uwe Aß-
mann, editors, Software Language Engineering, volume 6940, pages
180–200. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. Se-
ries Title: Lecture Notes in Computer Science.

[77] Hadjer Khider, Slimane Hammoudi, and Abdelkrim Meziane.
Business process model recommendation as a transformation pro-
cess in MDE: Conceptualization and first experiments. MODEL-
SWARD 2020 - Proceedings of the 8th International Conference on
Model-Driven Engineering and Software Development, pages 65–75,
2020.

[78] Omar Alam, Jonathan Corley, Constantin Masson, and Eugene Syr-
iani. Challenges for reuse in collaborative modeling environments.
In MoDELS, 2018.

[79] Jörg Kienzle, Gunter Mussbacher, Omar Alam, Matthias Schöttle,
Nicolas Belloir, Philippe Collet, Benoit Combemale, Julien DeAn-
toni, Jacques Klein, and Bernhard Rumpe. VCU: The Three Dimen-
sions of Reuse. In Georgia M. Kapitsaki and Eduardo Santana de
Almeida, editors, Software Reuse: Bridging with Social-Awareness,
volume 9679, pages 122–137. Springer International Publishing,
Cham, 2016. Series Title: Lecture Notes in Computer Science.

[80] Yanis Hattab. Extending Concern-Oriented Reuse to Existing Mod-
elling Languages. (April), 2020.

[81] Manar H. Alalfi, James R. Cordy, Thomas R. Dean, Matthew
Stephan, and Andrew Stevenson. Models are code too: Near-miss
clone detection for Simulink models. In 2012 28th IEEE International
Conference on Software Maintenance (ICSM), pages 295–304, Trento,
Italy, September 2012. IEEE.

[82] Bakr Al-Batran, Bernhard Schätz, and Benjamin Hummel. Seman-
tic Clone Detection for Model-Based Development of Embedded
Systems. In Jon Whittle, Tony Clark, and Thomas Kühne, ed-
itors, Model Driven Engineering Languages and Systems, volume
6981, pages 258–272. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2011. Series Title: Lecture Notes in Computer Science.

[83] Marcello La Rosa, Marlon Dumas, Chathura C. Ekanayake, Lu-
ciano Garcı́a-Bañuelos, Jan Recker, and Arthur H.M. ter Hofstede.
Detecting approximate clones in business process model reposito-
ries. Information Systems, 49:102–125, April 2015.

[84] Elizabeth P. Antony, Manar H. Alalfi, and James R. Cordy. An
approach to clone detection in behavioural models. In 2013 20th
Working Conference on Reverse Engineering (WCRE), pages 472–476,
Koblenz, Germany, October 2013. IEEE.

[85] Aastha Saini, Vivek Sharma, and M Tech Student. Detecting model
Clones using C K Metrics Suite. International Journal of Engineering
Research and General Science, 3(3):1605–1612, 2015.

[86] Andrej Dyck, Andreas Ganser, and Horst Lichter. Enabling model
recommenders for command-enabled editors. In CEUR Workshop
Proceedings, 2013.

[87] Andreas Ganser, Horst Lichter, Alexander Roth, and Bernhard
Rumpe. Staged model evolution and proactive quality guidance
for model libraries. Software Quality Journal, 24(3):675–708, Septem-
ber 2016.

[88] Tom Mens, Carine Lucas, and Patrick Steyaert. Supporting Dis-
ciplined Reuse and Evolution of UML Models. In Gerhard Goos,
Juris Hartmanis, Jan van Leeuwen, Jean Bézivin, and Pierre-Alain

27

Muller, editors, The Unified Modeling Language. ”UML”′98: Beyond
the Notation, volume 1618, pages 378–392. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 1999. Series Title: Lecture Notes in
Computer Science.

[89] Markus Herrmannsdörfer and Benjamin Hummel. Library Con-
cepts for Model Reuse. Electronic Notes in Theoretical Computer
Science, 253(7):121–134, September 2010.

[90] Matthieu Allon, Gilles Vanwormhoudt, Bernard Carré, Olivier
Caron, Matthieu Allon, Gilles Vanwormhoudt, Bernard Carré,
Olivier Caron Isolating, and Reusing Template. Isolating and
Reusing Template Instances in UML To cite this version : HAL
Id : hal-01327456. 2019.

[91] Tihamer Levendovszky, Gabor Karsai, Miklos Maroti, Akos
Ledeczi, and Hassan Charaf. Model Reuse with Metamodel-
Based Transformations. In Gerhard Goos, Juris Hartmanis, Jan
van Leeuwen, and Cristina Gacek, editors, Software Reuse: Meth-
ods, Techniques, and Tools, volume 2319, pages 166–178. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2002. Series Title: Lecture
Notes in Computer Science.

[92] Matthew Stephan. Towards a Cognizant Virtual Software Model-
ing Assistant using Model Clones. In 2019 IEEE/ACM 41st Inter-

national Conference on Software Engineering: New Ideas and Emerging
Results (ICSE-NIER), pages 21–24, Montreal, QC, Canada, May
2019. IEEE.

[93] Gunter Mussbacher, Benoit Combemale, Silvia Abrahão, Nelly
Bencomo, Loli Burgueño, Gregor Engels, Jörg Kienzle, Thomas
Kühn, Sébastien Mosser, Houari Sahraoui, and Martin Weyssow.
Towards an assessment grid for intelligent modeling assistance. In
Proceedings of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems: Companion Proceedings,
pages 1–10, Virtual Event Canada, October 2020. ACM.

[94] Juri Di Rocco, Claudio Di Sipio, Davide Di Ruscio, and Phuong T.
Nguyen. A GNN-based Recommender System to Assist the Spec-
ification of Metamodels and Models. In 2021 ACM/IEEE 24th In-
ternational Conference on Model Driven Engineering Languages and
Systems (MODELS), pages 70–81, Fukuoka, Japan, October 2021.
IEEE.

[95] Hugo Lourenco, Carla Ferreira, and Joao Costa Seco. OSTRICH -
A Type-Safe Template Language for Low-Code Development. In
2021 ACM/IEEE 24th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS), pages 216–226, Fukuoka,
Japan, October 2021. IEEE.

28

	Introduction
	Problem Statement
	Contribution
	Structure of the Deliverable

	Background
	Operation-based and State-based Mining in a Nutshell
	Motivating Example
	Model Reuse: an Initial Mapping Study

	Operation-based Mining
	Basic Concepts
	Proof of Concept

	State-based Mining
	Basic Concepts
	Prototypical Implementation

	Conclusion and Future Work
	Selected Studies

