
“This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No 813884”

Project Number: 813884

Project Acronym: Lowcomote

Project title: Training the Next Generation of Experts in Scalable Low-Code Engineering Platforms

Concepts for Testing in Low-Code Engineering
Repositories

Project GA: 813884

Project Acronym: Lowcomote

Project website: https://www.lowcomote.eu/

Project officer: Dora Horváth

Work Package: WP4

Deliverable number: D4.3

Production date: 30/11/2020

Contractual date of delivery: 30/11/2020

Actual date of delivery: 30/11/2020

Dissemination level: Public

Lead beneficiary: IMT Atlantique

Authors: Faezeh Khorram, Alessandro Colantoni, Luca Beradinelli, Jean-Marie Mottu

Contributors: The Lowcomote partners

1

Project Abstract

Low-code development platforms (LCPD) are software development platforms on the Cloud, provided
through a Platform-as-a-Service model, which allow users to build completely operational applications
by interacting through dynamic graphical user interfaces, visual diagrams and declarative languages.
They address the need of non-programmers to develop personalised software, and focus on their domain
expertise instead of implementation requirements.

Lowcomote will train a generation of experts that will upgrade the current trend of LCPDs to a new
paradigm, Low-code Engineering Platforms (LCEPs). LCEPs will be open, allowing to integrate hetero-
geneous engineering tools, interoperable, allowing for cross-platform engineering, scalable, supporting
very large engineering models and social networks of developers, smart, simplifying the development for
citizen developers by machine learning and recommendation techniques. This will be achieved by injecting
in LCDPs the theoretical and technical framework defined by recent research in Model Driven Engineer-
ing (MDE), augmented with Cloud Computing and Machine Learning techniques. This is possible today
thanks to recent breakthroughs in scalability of MDE performed in the EC FP7 research project MONDO,
led by Lowcomote partners.

The 48-month Lowcomote project will train the first European generation of skilled professionals in
LCEPs. The 15 future scientists will benefit from an original training and research programme merging
competencies and knowledge from 5 highly recognised academic institutions and 9 large and small indus-
tries of several domains. Co-supervision from both sectors is a promising process to facilitate agility of our
future professionals between the academic and industrial world.

2

Report Executive Summary

The WP4 (Large-scale repository and services for low-code engineering) will produce a repository for low-
code artefacts, able to store and enable the retrieval of heterogeneous modelling artifacts. Considering
Low-Code Engineering (LCE), the repository will include services for data mining, continuous software
engineering (CSE) [1] and quality assurance.

This first report (D4.3 - Month 23) among two (D4.6 - Month 41) presents the “Concepts for Testing in
Low-Code Engineering Repositories” covering both the Tasks 4.4 and 4.5:
• Task 4.4: DevOps Support for Low-Code Engineering Platforms, considered by ESR9 (JKU)
• Task 4.5: Cloud-Based Testing Workbench for Low-Code Engineering, considered by ESR10 (IMT)
“The report will cover the requirements to write and configure low-code tests, the specification of

the model transformations generating executable test, the consideration of the distribution of low-code
artefacts (in particular software and data) on the Cloud. The deliverable will also define how low-code
testing integrates in a process for DevOps in low-code engineering.” [Grant Agreement]

Whereas this report covers the requirements for supporting testing approaches in low-code development
platforms, it is complementary to the report D4.1 (M23) “Low-Code Engineering Repository Architecture
Specification”.

This report presents a preliminary model-driven approach to represent low-code testing processes
and their integration with DevOps-enabled low-code engineering platforms. This work has already been
validated in scientific publications [2, 3].

3

Contents

1 Introduction 5

2 Low-Code Testing 6
2.1 Features of Low-code Testing 6

2.1.1 Description of the features . . . 6
2.1.2 The Status of the Testing Com-

ponent of Mendix LCDP 9
2.2 Challenges and Opportunities 11

2.2.1 The Role of Citizen Developer
in Testing 11

2.2.2 The Need for High-level Test
Automation 13

2.2.3 Cloud Testing 14

3 Modeling Low-Code Testing Processes and
Platforms 16
3.1 DevOpsML 16

3.1.1 Platform Specification 17

3.1.2 Process Specification 18
3.1.3 Integration Mechanism 19

3.2 Modeling Testing Requirements, Pro-
cesses, and Low-Code Platforms in
DevOpsML 19
3.2.1 Modeling Low-Code Testing

Features. 21
3.2.2 Modeling Testing Capabilities

of LCDPs. 22
3.2.3 Modeling Continuous Soft-

ware Engineering Processes. . 24
3.2.4 Platform Requirements Mod-

eling 25
3.2.5 Platform Capabilities Analysis 26
3.2.6 DevOps Process and DevOps

Platform Weaving 27

4 Conclusion 28

4

1 Introduction

A Low-Code Development Platform (LCDP) is a software on the cloud whose target clients are non-
programmers aimed at building applications without having IT knowledge. It migrates the application
development style from manual coding using traditional programming languages into interacting with
graphical user interfaces, using pre-built components, and setting configurations. The user interfaces,
business logic, and data services are built through visual diagrams, high-level abstraction, declarative
languages, and in specific cases by manual coding. Less traditional hand-coding causes more speed in
application delivery and thus less cost [4, 5].

The main user of LCDP, called Citizen Developer, is a domain expert with no programming knowl-
edge [4]. Ease of use and simplicity, from the citizen developer’s point of view, is the determining success
factor of an LCDP. The number of low-code development platforms is growing as they have been highly
requested by citizen developers. These platforms fill the gap between business and IT through abstraction
and automation, so they improve the quality of the final product and accelerate the release time.

In all LCDPs, the Citizen developer has a major role in the application development process, but his lack
of technical IT knowledge leads to the emergence of new requirements and challenges in the definition of the
whole process as well as the concerns of each phase, including testing. There are several success stories of
existing commercial LCDPs [6, 5], which demonstrate they overcome some challenges somehow. However,
there is a vendor lock-in that confines the existing resources, which prevent both the interoperability and
extensibility of their proposals.

In this deliverable, we focus on the identification of the requirements to realize the testing phase of a
DevOps process, that is customizable for any LCDP. To this end, we initially synthesize the low-code testing
concept, by specifying the requirements to write, configure, and execute low-code tests. Hereafter, we
introduce DevOpsML as a framework for modeling DevOps processes and platforms. In this deliverable,
the framework is particularly used to model the concerns and capabilities identified for low-code testing,
their relationships with a commercial LCDP (Mendix, as an illustrative example), and their integration in
a DevOps process example.

It is worth mentioning that, the final output of the work presented here, will be two services for
Continuous Software Engineering (CSE) and Testing. They are introduced in deliverable 4.1, with their
potential functionalities and components, as services integrated into the Low-Code Engineering Repository
(LowCodER). In addition to the functionalities offered by a repository (CRUD operations in particular, as
considered in deliverable D4.1), testing while following a DevOps process required features from a low-
code platform. The main objective is to ultimately offer services that are reusable and/or customizable for
a variety of LCDPs, as introduced in the next subsections. The requirements to reach such objective are
detailed in this report. However, both of them are under development and their exact features cannot be
strictly claimed. We first introduce our motivations for considering Low-code Testing while following a
Devops process in the next subsections.

This deliverable is structured as follows:
• Chapter 2 identifies a set of requirements to support low-code testing in LCDPs, based on the low-code

concerns in general and what exist in existing LCDPs.
• Chapter 3 introduces DevOpsML, a model-driven conceptual framework for modeling and combining

arbitrary DevOps processes and platforms.
• Chapter 4 concludes the report.

5

2 Low-Code Testing

Independently from the tool or platform used for system development, the system needs to be tested to
ensure that all the requirements are realized. Each development approach, including low-code, has its own
features and requirements that have to be considered in both system development and testing to provide
the highest level of confidence to the final product.

The quality of the system built using an LCDP has to be assured, so a dedicated testing component
which satisfies low-code principles is required for LCDPs. Although there are many commercial tools
that are already used in the existing LCDPs for testing low-code systems (i.e., systems that are developed
using an LCDP) [2], they are not open to access and some challenges remain unsolved, especially when
considering the role of citizen developer in testing.

As far as we know, there is no research at the moment which specifies the features of such testing
component and the potential techniques which can be used for its development. In other words, according
to Mary Shaw classification of the phases of research in software engineering [7], the research in low-code
testing is in the first stage that is basic research since there is no formal structure to the ideas, concepts,
and research questions of this area; we use the term ‘low-code testing’ to denote the testing approaches
considering the low-code context.

In this deliverable, we identified a set of requirements to support low-code testing in LCDPs, based
on the low-code concerns in general [4]. We use Mendix as an illustrative LCDP to present which testing
components are embedded in such a commercial LCDP (whereas in [2], we conducted an analysis of
the testing components of five LCDPs, namely Mendix [8], Power Apps [9], Lightning [10], Temenos
Quantum [11], and Outsystem [12]). It highlights what is offered by successful commercial platforms (i.e.,
their testing capabilities) and what is still missing. They have been selected based on the recent reports of
Forrester [6] and Magic Quad Quadrant [5] in the low-code context. According to the reports, these LCDPs
are known successful since they have a good level of market presence and are called leaders in the low-code
community.

Based on the result of our previous analysis, we came up with a set of requirements for writing,
configuring, and executing low-code tests that are presented in the section 2.1.

Afterward, the existing challenges of the domain, and their associated difficulties and opportunities are
described in a research-centric approach in section 2.2, by providing related work in the state-of-the-art.

2.1 Features of Low-code Testing

Characterizing low-code testing is essential for performing a systematic comparison between the testing
components of commercial LCDPs, and consequently for finding the gaps in the state-of-the-art to enable
researchers to work on them.

In this section, we propose a set of 16 features customized for low-code testing, along with the possible
(may not complete) values for them. They are defined based on the low-code principles as well as the
capabilities and deficiencies of the testing components of commercial LCDPs, presented in [2]. These
features are indeed the decisions necessary to be made for building a low-code testing component, which
is adaptable to the required testing capabilities of a DevOps process using an LCDP.

As a case study, we chose Mendix LCDP to evaluate its testing facilities based on our proposed feature
list. Moreover, we will model its provided and required concerns and capabilities in section 3.2.2.

2.1.1 Description of the features

Table 1 demonstrates the features, classified in 5 categories, with the possible values for them. Some of the
features are general, while the rest are related to different testing activities i. e., test design, test generation,
test execution, and test evaluation.

2.1.1.1 General

This category specifies the high-level features of the test component of an LCDP. Generally, a Testing
Framework has to be used for building a test component. If the LCDP is going to have such a component,
it should be discussed whether a new Low-Code Testing Framework (LCTF) has to be implemented or an
existing one, which is not necessarily for the low-code domain, is preferable. In both cases, the Supported
Testing Scale and the Verification Support features have to be determined. The former defines in which levels
(unit, integration, system, UI, API, and End-to-End) the behavior of the system can be tested, while the
latter specifies the characteristics (functional and non-functional) of the system that can be verified, such as
functionality, performance, security, and so on.

The last feature of this category is Openness to third-party testing tools. It is a good practice to enable the
test component to integrate with other testing tools since it allows reusing the existing resources. Therefore,
the technique and the scale of openness should be specified. The integration could be closed, partially

6

Table 1: features of low-code testing with some possible values for them

Category Feature Possible Values
(1) Testing Framework No support,

New Low-Code Testing Framework (LCTF) dedicated to
LCDP,
Leveraging third-party frameworks (e. g., Selenium,
TestNG).

(2) Supported Testing Scale Unit, Integration, System, UI, API, End-to-End (E2E).
(3) Verification Support Functionality, Performance, Security, Usability, Compatibil-

ity, Reliability, etc.
General

(4) Openness to other test-
ing tools

Closed,
Import/Export of test models, test script, or test data,
Integrate via web-technologies (e. g., REST).

(5) The Role of Test De-
signer

Citizen developer (i. e., non-technical tester), IT developer,
Technical tester.

(6) Collaboration on Test
Design

No support, Collaborative test design, Continuous feedback
mechanism.

(7) Test Design Technique Model-Based Testing (MBT): Modeling the System based on
a DSL and auto-generating the executable test cases from it,
Visual/Graphical modeling of the test cases,
Record and Replay for automated UI testing,
Artificial Intelligence (AI): Automatic recognition of test
cases,
Keyword-driven: Using natural languages such as English,
Data-Driven Testing (DDT): Separating test data from test
cases,
Behavior-Driven Development (BDD)/Test-Driven Devel-
opment (TDD).

(8) Used/Produced Arti-
facts in Test Design

None,
System requirements,
System models (e. g., Data models, Logic models, UI pages),
Test specification, Test models, Test data.

Test
Design

(9) Reusability Reusing test data/test cases of other sources,
Reusable test cases provided by the testing component,
The possibility to define new test cases that can be reused
in a specific LCDP,
The possibility to define new test cases that can be reused
in various LCDPs.

(10) Automation of Test
Generation

High (support no-code), Medium (support low-code), Low
(manual coding).Test

Generation (11) Test Script Language New executable DSLs defined by the platform (e. g., Pow-
erApps expressions),
Existing test-specific languages such as TTCN-3,
Programming languages (e. g., Java).

(12) Automation of Test
Configuration

High (support no-code), Medium (support low-code), Low
(manual coding).

(13) Distribution Not supported, Distributed test execution.
(14) Test Execution
Tool/Service

New tools provided by LCDP, Third-party tools such as
Selenium server.

Test
Execution

(15) Test Execution Plat-
form

Provider cloud, Public cloud, On-premises, Standalone.

Test
Evaluation

(16) Test Result Evaluation
Technique

Monitoring, Comparison, Visual/textual reporting, Analyz-
ing execution traces.

7

open through import/export techniques to reuse testing artifacts of other sources, or completely open via
web-technologies.

2.1.1.2 Test Design

The features of this category are defined by considering the tasks of the citizen developer role in the testing
activities. Several roles can be supported in the test design phase and The Role of Test Designer feature
aimed at defining them. The citizen developer is the expert of the system functionalities which are used for
deriving tests. Therefore, in addition to IT developers and technical testers, she should be involved in the
test design activity. However, special techniques and tools should be used for supporting Collaboration on
Test Design to enable multiple people from different backgrounds to collaborate on the testing of the same
application.

The Test Design Technique affects the collaboration since it defines the method of test case definition; If
the technique is too technical, the citizen developer cannot collaborate in test design. According to our
investigation on commercial LCDPs [2], the following techniques are some potential options for low-code
testing, each of which able to resolve specific needs:
• Model-Based Testing (MBT) for supporting abstraction and automation in different levels of testing,
• Visual/Graphical modeling for designing test cases as graphical test models,
• Record and Replay for automated UI testing,
• Artificial Intelligence (AI) for recommending potential test cases,
• Keyword-driven for writing tests in natural languages such as English,
• Data-Driven Testing (DDT) for separating test data from test cases and consequently offering reusabil-

ity, and
• Behavior-Driven Development (BDD) or Test-Driven Development (TDD) for providing traceability

from system features to test cases, from the initial steps of the application development lifecycle.
This should be noted that the approach used for designing the tests has a direct impact on the quality

of the test suites and their adequacy. Additionally, in some approaches such as MBT, there are techniques
to evaluate these features automatically.

Usually, various artifacts can be used or will be produced during test design. The next feature, named
Used/Produced Artifacts in Test Design, is prescribed to define them. For instance, system features and/or
system models can be used to derive tests directly from them or to be linked to the test cases (e. g., in
BDD/TDD method). Thereupon, when a test case fails, it is easy to identify which system feature or
specification is not realized. Besides, in some test design methods, the definition of test-specific artifacts is
required, such as test specifications, test models (e. g., in MBT method), and test data (e. g., in DDT method).

LCDPs claim to have faster release time by offering various features, one of which is reusability. This
principle should also be regarded in the testing phase to maintain the pace, so we considered Reusability as
a feature for low-code testing. This feature can be offered by low-code testing component in different ways:

• providing the possibility of reusing test data/test cases of other sources; when the same language, for
test data/test case definition, is used in the low-code testing component and in the external source.

• offering reusable test cases from a pre-defined repository; when the low-code testing component offers
a set of reusable test cases (stored in a repository), that are previously defined for general objectives

• supporting the definition of reusable test cases for testing of an application built in an LCDP, which
could be reused in the testing of other applications built in the same LCDP; when the low-code testing
component is customized for a specific LCDP, and supports definition of reusable test cases (stored
in a repository) for later reuse in that specific LCDP

• supporting the possibility of defining reusable test cases compatible with various LCDPs, which
means they can be used in the testing of several applications developed in various LCDPs; when the
low-code testing component is generic and therefore applicable in various LCDPs, and also supports
definition of reusable test cases that could be stored in a repository to be reused later on

2.1.1.3 Test Generation

The LCDPs are supposed to provide as much automation as possible in all activities, especially those
technical, including test generation. Automation of Test Generation feature specifies the level of provided
automation in generating tests which could be High, meaning most of the steps are automated and only
simple tasks have to be done manually, Medium which means some tasks are automated but some others
have to be performed manually (e. g., definition of test data), and Low that refers to no support for
automation.

In different levels of automation, especially medium and low, manual scripting is required, e. g., to
implement the test cases that are not auto-generated. Test Script Language feature is considered since it
should be defined which language is supported by low-code testing component for scripting tests. Various

8

languages can be used, such as test-specific DSLs defined by the LCDPs, test-specific languages such as
Testing and Test Control Notation version 3 (TTCN-3)1, and programming languages (e. g., Java).

2.1.1.4 Test Execution

Automation, distribution, and cloud are the main concerns of the features of this category. LCDPs are
cloud-based, they support the development of cloud-based and distributed applications, and they tend to
be more scalable. Therefore, the low-code test component needs to support distributed test execution over
the cloud, and also to perform this activity in an automated manner.

Automation of Test Configuration feature investigates the level of automation provided by the testing
component for performing test configuration. We mentioned earlier that the more automation the LCDP
provides, especially for technical tasks, the less time and cost spent on releasing the final application.
Therefore, it is required to provide automation for test configuration as well.

Distribution refers to the capability of the low-code test component in distributed test execution. Dis-
tributed architectures are highly-used for developing systems, and they are supported in most LCDPs, so
the LCDP’s test component should be able to test the systems under such architectures. Moreover, the
cloud-native of LCDPs provides the infrastructure for executing tests in a distributed manner by leveraging
the cloud. Therefore, offering this feature by the low-code test component results in its more functionality.

Test Execution Tool/Service feature defines which tool or service is used in the test component for running
executable test cases. LCDPs could propose new tools, however, our analysis on commercial LCDPs
demonstrates that integrating third-party tools such as the Selenium server is preferable, even if the LCDP
has its own LCTF.

The last feature that we identified in the test execution category is Test Execution Platform. It specifies
on which platforms the tests can be run. According to our investigation of commercial LCDPs, provider
cloud, public cloud, on-premises, and standalone are the possible options of system deployment that are
provided by LCDPs. These options could also be supported as a platform for test execution.

2.1.1.5 Test Evaluation

The low-code test results should be generated in a way to be understandable for all the roles involved in the
testing phase. Therefore, several techniques should be used to demonstrate abstract/non-technical results to
citizen developers, while presenting concrete/technical results to the IT developers and the technical testers.
Test Result Evaluation Technique feature is defined to specify which techniques are used for evaluating test
results.

2.1.2 The Status of the Testing Component of Mendix LCDP

To be consistent all over the report, Mendix only is used as a case study (whereas three other LCDPs have
been considered in [2]). Nevertheless, the goal is not to be exhaustive but to illustrate that even a major
LCDP does not fulfil Lowcomote project’s objectives.

Mendix LCDP is introduced for application development on the web, mobile, and IoT platforms. It
includes two IDEs to support both no-code and low-code. The former is a drag & drop web-based studio
providing pre-built reusable components, while the latter is an IDE for experienced developers to integrate
models (e. g., data models, UI models, and microflow models) with manually written code [8].

Testing in Mendix: Quality assurance in Mendix is performed using several tools and services, some
of which are for testing while the others help to enhance the quality of the application.

Unit Testing Module is a Mendix-dedicated module for unit testing of the application’s logic (i. e., mi-
croflow models). The unit tests can be created using microflows and JUnit operations without writing any
code [13].

For supporting other kinds of testing, Mendix recommends the use of commercial tools such as SoapUI2

for automated integration and API testing, Selenium IDE3 for browser-based UI and acceptance testing,
and TestNG [14] for scripting automated tests in Java language [13].

Moreover, there are three quality add-ons provided by Mendix which are not testing tools, but their
usage improves the quality of the application:
• Application Test Suite (ATS): ATS is a set of tools built on top of Selenium [15] for embedding test into

application lifecycle.
• Application Quality Monitor (AQM): By this service, the application models are analyzed statically

and the technical quality of the application is calculated based on a subset of features of software
maintainability derived from ISO 25010 [16].The features are analyzability, modifiability, testability,
modularity, and reusability;

1http://www.ttcn-3.org/
2https://smartbear.com/product/ready-api/soapui/overview/
3https://www.selenium.dev/selenium-ide/

9

• Application Performance Diagnostics (APD): This is a cloud service responsible for performance mon-
itoring.It contains a set of tools including the Trap tool that records all levels of logging and stores
them when an error occurs, the Statistics tool which identifies trends from application performance
statistics, the Performance tool that analyzes individual functions and visualizes where improvement
is possible, and the Measurements tool for CPU and Memory monitoring [17].

To demonstrate how our proposed feature list can be applied for the evaluation of low-code testing
components, we use it to organize our analysis result on the Mendix testing component.

1. Mendix proposes a new Low-Code Testing Framework (LCTF) but with limited capabilities. Con-
sequently, it provides integration with third-party testing tools to have reasonable coverage of all
testing activities.

2. The LCTF of Mendix is designed only for unit testing, and the other testing scales are supported by
its integrated third-party testing tools.

3. Functionality and Performance are the features that are continuously tested in Mendix.
4. Mendix uses web technologies to integrate with third-party testing tools, and it also provides test

data import/export mechanism.
5. Technical testers and/or developers are in charge of performing tests using the third-party tools

integrated with Mendix. The citizen developer is only involved in the testing activities supported by
Mendix LCTF (i.e., unit testing), and also Automated UI testing using Selenium WebDriver.

6. Collaboration is considered in Mendix, but mainly between technical developers and testers. For
collaboration with non-technical developers, Mendix offers an easy to use feedback mechanism.

7. Among different test design techniques, the LCTF of Mendix follows the MBT and graphical modeling
approach for designing unit tests based on the DSL it uses for microflow modeling (i.e., BPMN
language). Moreover, Record and Replay technique is supported for automated UI testing, through
integration with Selenium IDE, and Keyword-driven and DDT techniques are used in the integrated
third-party testing tools.

8. Among the various artifacts, Mendix LCTF uses i) system requirements to explicitly map them to
the test cases, ii) UI pages for performing UI tests through Selenium recording tool, since UI test
specifications are captured based on user interaction with UI pages, and iii) system models, including
microflow diagrams and domain models, for designing unit tests. Mendix LCTF also produces unit
test models (i.e., BPMN models) since it uses graphical modeling for designing unit tests.

9. Mendix LCTF offers reusable test case templates, importing test data from external files, and definition
of reusable test cases to be used in the testing of other applications built in the Mendix platform.

10. A medium level of automation for test generation is provided in Mendix, but mostly by its integrated
third-party testing tools.

11. The final executable test cases are generated in java (Mendix LCTF uses jUnit library).
12. The test configuration is automated at a medium level since manual efforts are still needed in some

cases.
13. Distributed test execution is considered in Mendix, by leveraging Selenium Grid.
14. Mendix uses Selenium Server as its test execution tool.
15. Provider cloud and on-premises are the supported test execution platforms in Mendix.
16. Monitoring and visual and textual reporting are provided in Mendix. It also analyzes the execution

traces and offers notes for improvement.
To sum up, the results of our evaluation on the testing components of commercial LCDPs that is pre-

sented in [2], revealed that there are specific features for low-code testing that should always be considered
and cannot be neglected in the testing component of any LCDP. They are the role of citizen developer,
the side effects of her non-programming knowledge in her involvement in testing, the need for high-level
automation, and leveraging the cloud. According to them, the next section rephrases the deficiencies in
low-code testing in a research-centric approach through providing related work in academia, and proposing
opportunities based on them for future work in this area.

10

LCDP

Test Editor

Citizen
Developer

Develop the
LCDP

Low-code Testing
Framework

Design the system

Design the tests

LCDP
Developers

System Editor

Generate

Sample System
Model

Sample Test Model

Use

?

Figure 1: An overview of the main challenges in low-code testing (The model instances are derived
from [18])

2.2 Challenges and Opportunities

There is a community of people – LCDP developers – who aim at building new low-code development
platforms because there are new application domains, features, technologies, customers, and consequently
new requirements for the development of new LCDPs. As depicted in Figure 1, these platforms have
two main editors in a nutshell, one for building a software system and another for testing that system.
Potentially, the citizen developer (i. e., the user of the platform) works with both editors to design the
system and the test cases, for example through visual modeling.

The problem from the testing point of view is that there is no general framework, to be used by
LCDP developers, for building the testing component of their intended LCDPs which fully supports low-
code testing features. Lack of such a framework resulted in the high-dependency of existing LCDPs to
technical third-party testing tools which are not usable for citizen developers. Additionally, although some
commercial LCDPs propose new low-code testing frameworks, they do not fulfill all low-code testing
features, they are not reusable for other LCDPs, and their resources are not accessible publicly.

In the following subsections, we expound the problematic under several challenges, categorized based
on the most important features of the low-code context: the role of citizen developer, the need for automa-
tion, and the effects of the cloud. Meanwhile, the previous attempts and the potential opportunities to
overcome the challenges are also expressed.

2.2.1 The Role of Citizen Developer in Testing

In a low-code development platform, the citizen developer is responsible for the definition of requirements
since she is the expert of the system functionalities. As test cases are mainly derived from the requirements,
so she is in charge to define test cases and also to evaluate test results. Therefore, her full involvement in the
testing activities, from design to evaluation, is essential for low-code testing but her low-level of technical
knowledge causes many challenges, hence new techniques are required.

Regarding the main objective of LCDPs, i. e., providing system development facilities for domain ex-
perts, Domain-Specific Languages (DSLs) are the underlying theory in the LCDP development; A Domain-
Specific Language (DSL) is a computer language specialized to a particular application domain that enables
domain experts to create a system using concepts they are familiar with [19]. The target application domain
of an LCDP, or more specifically, the aspects of a system that are modeled in that LCDP, defines which
kind of DSLs are used on its basis. For instance, the Business Process Model and Notation (BPMN) is a
well-known DSL for modeling business processes. It is used in Mendix LCDP to enable users to develop
applications for automating the business processes of their organizations [20].

LCDPs are built based on specific DSLs. When a citizen developer designs a system in an LCDP, she
11

actually creates instances of the underlying DSL. As she is the domain expert, she can instantiate models
from the DSL with low training. If the test cases can be written in the same language as the software
(i. e., the same DSL), the citizen developer can design tests with no additional training, so the efficiency
increases. An example of this is depicted at the top of Figure 1. The citizen developer designed an elevator
by instantiating from a specific DSL. The elevator has one Door, three Floor buttons, two Up buttons, and
two Down buttons, and it can stop in three Floors. By using the same DSL augmented with test-specific
elements, she designed a test case model to verify the following requirement [18] that we stated in BDD
style:

GIVEN the elevator on the first floor with the Up button pressed,
WHEN the elevator’s door is closed AND the Floor button is pressed on the second floor,
THEN the elevator stays on the first floor AND its door becomes open.

Despite the benefits of using the same language for designing the software and its tests, especially
in the low-code domain, it is rarely used in LCDPs as its implementation resources are limited or are
dedicated to specific DSLs and are not reusable. BDD framework of OutSystems LCDP is a successful case
of the implementation of such an approach in the real-world. It extends the platform’s DSL with testing
elements such as Assertions to enable automated Unit and API testing. The test cases are firstly defined
textually using Given-When-Then clauses and then each clause is modeled in the same approach as system
modeled [21]. OutSystems LCDP uses code generation engines to produce executable code. Consequently,
the test models are transformed into Java or C# code to be executed against the system under test.

Once again, it is not appropriate to propose a solution dedicated to one LCDP and its DSL. Lowcomote
Project promotes Low-code Engineering to enable citizen developers in defining test cases, by using a
generic testing language which is fairly easy to use for non-technical developers. The language should
support automatic test configuration, generation, and execution, since these are the very technical activities
of the testing process and consequently have to be relaxed for low-code testing. Additionally, as one of the
main objectives of Low-Code Engineering Repositories is offering services that could be reused by various
LCDPs, the language being independent from any platform should be compatible with any low-code DSLs
thanks to transformations and generations. However, there exist no such testing language.

2.2.1.1 Previous Attempts

The first mentioned technique i. e., in detail DSL extension with further properties (e. g., testing features)
is a language engineering issue that is investigated in several papers. In [22, 23], a framework, named
ProMoBox, is introduced that enables DSL engineers to auto-integrate five sub-languages to a given DSL,
to support specification and verification of temporal properties of a system modeled using the given DSL.
It uses Linear Temporal Logic (LTL) to specify properties and offers a model checking engine plug-able to
DSL environments to run and evaluate them.

The ProMoBox framework is restricted to the DSLs whose semantics are described as a rule-based
transformation; by this semantics, the system behavior is captured through state changes. Moreover, it is
limited to the verification of LTL-based properties. Totally relying on the model checking technique causes
the framework’s low performance due to high memory usage.

The main issues with the ProMoBox framework were inherited in using model checking. In [18], the
framework is adapted to test case generation techniques as it is a valuable alternative to model checking. It
proposes an automatic approach to augment a given DSL with testing elements derived from a specific test
DSL so that modelers can model functional unit tests in the same language as system models. The model
instances in Figure 1 are taken from the running example of this paper.

The testing support of the ProMoBox framework is also restricted to DSLs with rule-based semantics.
In addition, it does not support real-time models, other testing scales such as API testing, and distributed
test execution since the testing DSL that is used, involves only basic testing elements while there are other
testing DSLs covering those of complex. For example, Test Description Language (TDL) is a DSL for high-
level test specification that is defined to smooth the transition from system requirements to executable test
cases written in TTCN-3; it is itself a test-specific DSL for black-box testing of distributed systems [24].

TDL is a potential candidate to be the testing language of Lowcomote Testing Framework: it is standard,
specifically defined for non-technical testers, offers a high-level of abstraction for test description, and is
platform-independent [24]. However, the main shortcoming of TDL is in its execution. TDL is not executable
by itself, and for running test cases written in TDL, they have to be first transformed to TTCN-3 code, and
then the technical developers have to implement adapters and codecs to make test execution feasible on
the intended system under test. Therefore, a high-level of technical aspects should be managed manually,
and TDL is currently deficient for low-code testing (regarding the low-code testing features presented in
Table 1)

12

2.2.1.2 Opportunities

Among numerous DSLs, there are many, specific for the testing domain. They can be distinguished based
on their support for different testing scale (e. g., Unit, Integration, API), testing type (e. g., Performance,
Security, Compatibility), application domain (e. g., mobile, web, IoT), and application deployment (e. g.,
on-premises, cloud, embedded). One solution to the described shortcomings of the state-of-the-art is the
support for other testing DSLs (e. g., TDL) in the DSL extension process. Another opportunity that can be
taken into account is proposing a generic DSL extension technique that can support different kinds of DSLs
(not just DSLs with rule-based semantics). Nevertheless, this generalization reveals specific challenges
since the semantics of DSLs could be defined in different ways (i. e., Interpretation and Compilation), and
consequently, for the generation of executable test cases and the interpretation of test failures in the model
level, various approaches should be followed.

Following the difficulties mentioned for direct use of TDL for low-code testing, a good opportunity is to
make it executable without relying on TTCN-3 language. We are currently working on the implementation
of an execution engine for TDL which will be capable of performing automatic test generation, configuration,
and execution.

In addition to the DSL-based opportunities, the research areas such as assistant chatbots and recom-
mendation systems are also topics of interest in the alleviation of the challenges related to the role of citizen
developer in testing. In other words, as citizen developers do not have the technical knowledge of testing,
even if they can model the test cases in the same language as system models, or using a very simple testing
language, they need to be assisted on how to correctly design the test models.

2.2.2 The Need for High-level Test Automation

Many efforts on test automation are conducted so far, as it saves significant time and effort. Test automation
enables continuous quality assessment at a reasonable cost, and this is essential for DevOps. Automation is
possible on different kinds of tests such as unit, API, and UI functional tests, as well as load and performance
non-functional tests.

The upward tendency towards building multi-experience applications also increases the need for the
evolution of test automation. LCDPs are specialists for the development of such applications, consequently,
test automation is vital in these platforms. Especially, automated API testing is essential in LCDPs as
low-code applications use many integrations to other services using APIs. If these integrations are not
continuously tested, the application breaks easily.

In low-code testing, a high-level of automation should be provided alongside a low dependency on
technical knowledge. Despite that most of the automated testing tools are very technical and they use
manual scripting for writing tests, there are some trends followed by them to facilitate this task. To identify
the techniques they use, we made an investigation on some of them, selected from [25].

Briefly, the results of this query along with the information gathered in [2] revealed that the most popular
testing techniques aimed at simplicity alongside automation, are Data-Driven, Model-Based, and Record
and Replay which are used almost together. The data-driven testing technique provides reusability of test
data through its separation from test scripts, while in record and replay technique UI tests are automated
by recording user interactions with UI pages. The Model-Based Testing (MBT) technique is applicable for
automating tests on any scale, so it is the most comprehensive approach compared to others. Abstraction
and automation are its basic objectives and are offered by visual modeling and transformation engines,
respectively. It is especially useful when a test run on several deployment options is imperative, which
is a considerably important requirement in low-code testing since LCDPs are supposed to auto-generate
applications on several platforms from a single system specification. MBT can be considered following two
different directions:
• SUT Modeling: Modeling the System Under Test (SUT) using a Domain-Specific Modeling Language

(DSML), and then auto-transforming these system models into the test cases, test scripts, and test
data, using transformation engines.

• Test Modeling: Modeling the test cases and test data using a test-specific DSML, and then automati-
cally configuring and executing them on the SUT through the DSML execution engine.

It is evident that the engines are the pivotal elements in both approaches, in providing automation for
test implementation, configuration, and execution on several, yet totally different, platforms. As much as
automation the engines provide, the efficiency of MBT increases. The crucial role of transformation engines
proves the obligation of tool support in MBT. Considering the SUT Modeling approach, there are numerous
MBT languages and tools, each of which adapted to specific domains (and consequently specific DSLs),
testing methods, and coverage criteria. Therefore, MBT tool selection is a challenging task [26]. For the
Test Modeling approach, TDL and TTCN-3 are the only test-specific DSMLs. However, the former is not
executable at all, and the latter requires a high-level of technical and manual effort to become executable.

13

2.2.2.1 Previous Attempts

According to the classification of MBT approaches into two categories, namely SUT Modeling and Test
Modeling, we identify the previous attempts for each one of them.

SUT Modeling: MBT is a growing research field and many papers in this domain are published each
year. The latest mapping study on MBT performed by Bernardino et al. illustrates that from 2006 to
2016, approximately 70 MBT supporting tools are proposed by business and academy while some of which
are open source [26]. This significant number of tools promotes the opportunity to create a repository of
existing MBT tools which can be analyzed for different purposes, but there is no repository so far.

Test Modeling: To the best of our knowledge, there is no previous effort on making TDL executable,
and for making TTCN-3 less technical, TDL is in fact introduced for this purpose, but only for filling the
technical gap in the test design. Therefore, TTCN-3 test generation, configuration, and execution is still a
technical and demanding task [24].

2.2.2.2 Opportunities

MBT as SUT Modeling: The model-based testing is addressed in many papers, but it is not specialized for
the low-code context. As we mentioned earlier, low-code development platforms are based on particular
DSLs and system modeling is inherent in these platforms. Therefore, for the application of MBT in LCDPs,
the first step (i. e., selection of a modeling language) is strictly imposed by the platform. Accordingly, for
using MBT in the testing component of LCDPs, two modes exist:

1. If MBT is already applied to the LCDP’s underlying DSL and associated tools exist, an appropriate
tool has to be selected from the existing pool.

2. Otherwise, implementation of new MBT tools adapted to the DSL is required.

Both mentioned modes promote new challenges and thereupon opportunities, since there is neither a
pool of existing MBT tools nor a technique or tool to enable the development of new MBT tools for a given
DSL. Discovery and retrieval of appropriate MBT tools based on a set of input features (e. g., application
domain, input DSL, testing scale), comparison between different tools based on their features for the same
testing scale, and composition of compatible MBT tools especially when they are service-oriented, are a few
of use cases of the implementation of such opportunities.

MBT as Test Modeling: Implementation of an execution engine for TDL could be seen as the main
opportunity, since TDL’s strengths fit well with the low-code test design features of table 1.

2.2.3 Cloud Testing

Cloud testing can be defined in three aspects: 1) Testing of the Cloud, meaning functional and non-
functional testing of cloud-based applications; 2) Testing in the Cloud refers to leveraging scalable cloud
infrastructure, tools, techniques, and computing resources for testing non-cloud applications; and 3) the
combination of both which is testing the applications deployed in the cloud by using cloud resources [27].

In 2019, Bertolino et al. performed a systematic review of the cloud testing area [27]. The result of their
investigation on 147 papers demonstrated that almost two-third of the state-of-the-art targets the challenges
in testing in the cloud, while approximately one-quarter of them target those of in testing of the cloud.
Additionally, as can be seen in Figure 2 taken from [27], test design and execution are the most notable
areas in cloud testing.

The existing LCDPs are all cloud-based and they support the development of cloud-based applications.
Meanwhile, there is an upward trend in low-code context to support the development of large-scale
applications, especially for the domains of mobile, web, and Service-Oriented Architectures (SOA) such as
Microservices. Overall, as the cloud offers development and maintenance of scalable test infrastructures,
and configuration of on-demand scalable resources through cloud virtualization [27], all three aspects of
cloud testing have to be provided by LCDPs, especially in those of scalable.

2.2.3.1 Previous Attempts

Besides the existing challenges and issues described in [27] for the cloud testing in general, the specific
features of low-code introduces new ones. As we described in section 2.2.2, MBT (in its both directions) is
the most compatible approach with low-code testing. The challenge is how the three paradigms of cloud
testing can be provided by MBT techniques and tools. As far as we know, there is no related work for
considering cloud in MBT as Test Modeling, and all the following presented information are the previous
attempts in MBT as SUT Modeling.

In MBT, given an abstract picture of the SUT, it is possible to generate many test cases to be executed
on the cloud [27]. Several cloud-based MBT frameworks are proposed so far, each of which specialized in
different application domains and testing levels.

MIDAS is a cloud-based MBT testing platform for Software-Oriented Architectures (SOA). It supports
functional, usage-based, and security testing of individual web services and also their orchestration in SOA

14

Figure 2: The trends of the areas in cloud testing by year (Taken from [27])

applications. Therefore, it provides the third aspect of cloud testing that is testing of the cloud in the cloud.
In the MIDAS framework, a new DSL is used for system modeling which is based on the Unified Modeling
Language (UML) and the UML Testing Profile (UTP) augmented with SOA-specific features and conditions.
Several cloud-based services for test case generation are deployed in MIDAS, each of them uses a distinct
test scenario as a basis. Indeed, each service receives a MIDAS DSL model as input and generates test cases
for the input model, based on its own test scenario. There are also other services for test case prioritization,
scheduling, transformation to the TTCN-3 test code, execution, and arbitration [28, 29, 30, 31, 32, 33].

The MIDAS framework only supports testing of SOA applications which are manually modeled using
the MIDAS DSL, and which can communicate only via Soap APIs. Besides, the resources for their DSL and
the TTCN-3 code generation service are not accessible. These shortcomings lead to its low-level of usage.

2.2.3.2 Opportunities

We identify the opportunities for cloud-based low-code testing focused on supporting cloud in MBT,
according to the opportunities described above for other aspects.

The approach introduced by MIDAS, i.e. model-based testing as a service and providing cloud-based
services for different testing activities, is very interesting to be continued for other testing DSLs, which
the best potential one is TDL. One considerable opportunity could be the generation of a comprehensive
framework that auto-generates test-specific services for a given DSL. In that case, the opportunities written
in the previous sections can be seen as different parts of this framework which in total leads to a cloud-based
low-code testing framework.

15

3 Modeling Low-Code Testing Processes and Platforms

This Section introduces DevOpsML [3], a model-driven conceptual framework for modeling and combining
arbitrary DevOps processes and platforms. Tools along with their interfaces and capabilities are the building
blocks of DevOps platform configurations, which can be mapped to software engineering processes of
arbitrary complexity.

In this deliverable, we show how the DevOpsML framework can be used to model and combine testing
processes and low-code platform specifications to support specific testing features as those outlined in
Section 2 (see Table 1).

The rest of the section is organised as follows. Section 3.1 introduces DevOpsML [3], its modeling
capabilities for DevOps processes and platforms, and its weaving mechanism for combining process and
platform models. Section 3.2 shows DevOpsML in action. In particular, we show how to model and
combine i) generic testing features as reusable library of DevOpsML capabilities and concerns, ii) DevOps
pipeline including testing steps, iii) testing process requirements for LCDP, and iv) LCDPs as a suitable
combination of tools whose provided capabilities satisfy the given testing requirements.

3.1 DevOpsML

Over the last decade, DevOps methods and tools have been successfully implemented and adopted by
companies to boost automation and efficiency of the engineering process. The term DevOps was coined
in 2009 [34] and became popular among companies and practitioners [35] and, subsequently, among
researchers and academia. Jabbari et al. [36] define DevOps as ”[...] a development methodology aimed at
bridging the gap between Development and Operations, emphasizing communication and collaboration, continuous
integration, quality assurance and delivery with automated deployment utilizing a set of development practices.”.

The momentum on DevOps resulted in a flourishing of technological solutions to meet the huge market
demands [37]. The side effects of such a rapid evolution was a scattered landscape of technological solu-
tions offering a variety of tools [38] for supporting activities of continuous-software engineering (continuous
software engineering) [1] processes.

Figure 3 gives a bird’s eye view of the problem at hand. There is no ”one size fits all” DevOps process
that is capable to cope with all the specific goals, strategies, and requirements. Different DevOps process
variants exist (e.g., DevSecOps [39] or AIOps [40] to mention just a few). The process variability is reflected
on DevOps platforms too, which may aggregate different engineering services (e.g., security mechanisms
and AI-augmented services) depending on process needs.

Consequently, the choice of DevOps platforms for specific engineering processes is still an open chal-
lenge. In [34], Bordelau et al. investigated and elicited sets of requirements for DevOps frameworks.
Among them, they consider also the need for an adequate support for modeling of DevOps engineering
processes, of the product resulting from the process, i.e., the software system, as well as requirements of
resources (e.g., tools) involved in the accomplishment of development and operations phases. Furthermore,
it has to be mentioned that the same DevOps process and platform can be more or less adequate based on
different skills of the involved stakeholders, nowadays possibly ranging from skilled engineers to domain
experts with no ICT background at all.

DevOps		
Platform	

DevOps	
Process	

S	 S	 S	 S	 S	

«uses»	

Platform	
	Metamodel	

Platform		
Model	

«c2»	 «represents»	

Link	
	Metamodel	

Link		
Model	

«c2»	 «represents»	

SPEM	
	Metamodel	

SPEM		
Model	

«c2»	 «represents»	

Platform	
Spec.	

Integration	
Mechanism	

Software	
Process	Spec	

«realizes»	

«realizes»	

«realizes»	
a)	 b)	

Figure 3: The DevOpsML framework elements (a) and their implementations (b).

In order to tackle this shortcoming, we introduced in [3] DevOpsML, a conceptual framework for mod-
eling and configuring DevOps engineering processes and platforms. With DevOpsML, we approach the
problem of DevOps process and platform integration from two directions. First, in a bottom-up approach,
existing DevOps platforms can be studied and their characteristics made explicit in so-called platform
models. Second, in a top-down approach, we propose the usage of process modeling languages [41] to
explain the DevOps processes. The glue between the two directions is a linking language, which explains
how the different services offered by the platforms are used by the processes.

16

1..*

<<enumeration>>

PPRAspect
PROCESS
PRODUCT
RESOURCE

<<enumeration>>

DevOpsPhase
MODEL
GENERATE
CODE
BUILD
TEST
RELEASE
DEPLOY
OPERATE
MONITOR
PLAN

**

1..*
ToolsAndInterfaces

*

* *

<<enumeration>>

InterfaceType
GUI
API
SCRIPT
CLI
SPEC

<<abstract>>

PlatformElement

name: String [1]
description : String [1]
devOpsPhases: DevOpsPhase [*]
status : Status [0..1]

Platform

name: String [1]

<<enumeration>>

Status

REQUIRED
PROVIDED

*

*

**

Concern

target: PPR [0..1]

CapabilitiesAndConcerns

ToolCapability Interface

type : InterfaceType [*]

*

Figure 4: Platform metamodel.

In Section 3.2, we show how the DevOpsML conceptual framework can be adopted to show the integra-
tion of low-code testing phases in user-defined DevOps engineering processes supported by configurable
low-code platforms. In particular, we will show how DevOpsML can be adopted to model i) the low-code
testing features collected in Table 1 (as reusable library of testing capabilities and concerns), ii) a low-
code platform offering testing capabilities, and iii) a DevOps process including testing phases requiring
such testing capabilities. The resulting process and platform models can be finally integrated via model
weaving [42].

The rest of this section details the DevOpsML framework elements depicted in Figure 3 and present
some guidelines on how to use DevOpsML.

DevOpsML consists of three elements, namely software process specification, platform specification, and
integration mechanism. In our prototypical implementation, available at [43], we implement them following
a typical model-driven approach. We separately introduce the DevOpsML framework elements in the
following subsections.

3.1.1 Platform Specification

According to the given DevOps definition [36], we expect that a platform configuration is capable to support
development and operational activities adopting and realizing MDE principle and practices [42].

In DevOpsML, a platform is a combination of tools, each one providing (or requiring) a set of capabilities
addressing engineering concerns of interest, supported by combining tools via explicit interfaces. A
platform is expected to satisfy and be able to satisfy the needs of an arbitrary engineering process.

Following typical MDE practices, we provide a platform metamodel to create platform models represent-
ing a combination of tools, interfaces, capabilities, and concerns. The metamodel with its concepts and
relationships is shown in Figure 4 and implemented in Ecore [43]. The following paragraphs detail the
content of the platform metamodel.
Tools and Interfaces. This package introduces metaclasses for representing tools and interfaces.

In its broadest meaning, a tool is a resource that helps in accomplishing a work unit of an engineering
process. It provides or requires interfaces.

An interface represents the boundary of tools, and consequently, of platforms as a whole, through which
interactions among tools and platforms take place, according to their required and provided capabilities.
Interfaces play the roles of connectors [44] among platform elements, directly connecting multiple tools
and, through them, their capabilities. We consider a predefined but extensible set of interface types, i.e.,
graphical user interfaces (GUI), application programming interfaces (API), script, command line interfaces
(CLI), or more generic specifications (SPEC).
Capabilities and Concerns. This package introduces the concepts of capability and concern.

For capability, we intend a facility enabled by a particular platform configuration for performing a
specified activity that will be specified in a separated process model (see Section 3.1.2).

A concern is ”a stakeholder’s interest that pertains to the development of an application, its operation or any other
matters that are critical or otherwise important” [45].

A platform configuration is expected to offer capabilities to address concerns related to (i) the engineering
process, (ii) the system under study, i.e., the product of the engineering process, and (iii) of the resources (both
human and technological ones) required for the correct and convenient process execution and delivery of
the engineered product. We introduce the PPRAspect enumeration to distinguish among process, product,
and resource concerns [46].
Common concepts. The platform metamodel also includes some shared concepts: platform element, status,
and DevOps phase.

A platform element is an abstract concept that groups common properties of capabilities, concerns,
tools, and interfaces. For all these platform elements, a name and a textual description are mandatory and,
together, correspond to the minimal wealth of knowledge required to model platform elements.

Since we intend to model DevOps platforms, we expect that its elements will support typical DevOps

17

process phases (code, build, test, release, deploy, operate, monitor, and plan), which are given as literals of
the DevOps phase enumeration. In addition, we aim at applying MDE principles and practices and for this
reason, we include model and generate phases, which are recurrent activities in model-driven engineering
processes. Each platform element can be associated with many DevOps phases.

It is worth nothing that the given DevOps phase enumeration is not exhaustive and it can be extended,
if needed. However, we expect detailed engineering process information to be modeled in separated
process models (see Section 3.1.2). Finally, provided or required status can be set for any platform element,
providing rationales for composing the platform like technology-wise matching of required and provided
tools’ interfaces or higher-level evaluation of platforms’ capabilities against engineering process or product-
related concerns.

3.1.2 Process Specification

Process management is a core concern for software engineering since decades [47, 48] and regards the
specification and execution of organizational behaviours, where working units at different levels of gran-
ularity are combined in a workflow. Stakeholders with defined roles collaborate to perform the process.
Engineering artifacts are produced and manipulated throughout the process.

In DevOpsML, a platform is meant to support model-driven continuous software engineering processes,
where activities are expected to manipulate and share MDE artifacts [49], aiming at the highest degree of
automation.

In DevOpsML, we assume that a process (model) provides the rationales to choose the elements of
a DevOps platform (model), defined as described in Section 3.1.1. For the sake of process specification,
DevOpsML needs a software process modeling language (SPML). In [41], a quality model for SPMLs is
given.

Table 2: Process modeling capabilities [50] and their support in SPEM

Process modeling capability SPEM (MC:Method Content Package,
PM:Process with Methods Package)

A process type is defined by the composition of one
or more task types. Each process comprises one or
more tasks (P1, P11).

PM:Activity; PM:Task Use

Each task type is created by an actor. An actor may
have more than one actor type. An actor that performs
a task must be authorized for that task. Actor types
may specialize other actor types (P4, P15,P17, P18).

MC:Role Definition; PM:Composite Role;
PM:Role Use; PM:Team Profile

Tasks are associated with artifacts used and produced,
along with performing actors. For each task type one
may stipulate the artifact types which are used and
produced (P7, P13, P14)

MC:Task Definition; MC:Work Product Def-
inition; MC:Role Definition; MC:Default
Task Definition Parameter; PM:Work Prod-
uct Use;

For our first prototypical implementation of DevOpsML [43], we choose the Software and Systems
Process Engineering Metamodel (SPEM) [51]. SPEM satisfies a minimal set of modeling capabilities that we
require for a DevOpsML proof of concept phase. Table 2 provides a list of common capabilities of process
modeling languages described in [50] for the sake of a process modeling challenge4 and maps them to the
corresponding concepts defined in SPEM [51]. The complete mapping is available in [43].

Second, we decide to give higher importance to the descriptive capability of SPEM [47] for documen-
tation purposes rather than executability, in which case BPMN or UML Activities (via Foundational UML
(fUML) [52]) are more appropriate solutions than SPEM. Moreover, SPEM supports the specification of new
processes by separating the definition of reusable process model elements (see Method Content language
package in [51]) and their actual uses in processes (see the Process with Methods language package in [51]).
In Table 2, we reported the owning package of each mapped concept that we use later in Sections 3.2.4 and
3.2.6 to show DevOpsML in action.

However, it is worth noting that the choice of a particular SPML for process specification is a variation
point of DevOpsML. Indeed, different SPML can be chosen from existing ones [41] or new ones can be created
following software language and model-driven engineering practices [53, 54] to cope with arbitrary SPML’s
requirements like process modeling capabilities [50] or usability by (non-)technical users. For example,
when considering LCDPs [2, 55] as target platforms in DevOpsML, we may expect to reuse a built-in process
modeling language and graphical process editors (e.g., microflow by Mendix [8]).

4The table report in parenthesis the original IDs (Px) of the process modeling capabilities.

18

*	

Element	
<<abstract>>	

name:	String	[0..*]	

Model	

leftM	

LinkModel	

rightM	*	

0..1	parent	

*	children	

Link	

ModelElement	

*	 *	prMe	 plMe	 *	 *	prMe	 prMe	 *	 *	plMe	 plMe	

Process2Platform	 Platform2Platform	Process2Process	

Figure 5: The Linking metamodel.

3.1.3 Integration Mechanism

DevOpsML is a model-driven framework and, as such, different model integration mechanisms are good
candidates to provide a model integration capability, such as model weaving and model transformation [42].

For DevOpsML, we choose the model weaving mechanism to link elements from platform and process
models. Epsilon Modelink [56] for establishing and editing references between platform and process
models.

Figure 5 shows a linking metamodel for this purpose. A link model contains a collection of hierarchical
links. Since we do not specify any direction for links, we consider them bidirectional by construction. Each
link is weaving sets of model elements belonging to process or platform models5.

Based on the nature of the woven models, three different types of links can be distinguished: platform to
process, platform to platform, and process to process:

• Process to Platform: process work units, at any granularity level (e.g., SPEM activities, tasks, steps)
can be mapped to platform elements (tools, interfaces, capabilities, concerns).

• Platform to Platform: elements from two or more platform models can be linked for user-defined
rationales. For example, based on values set for status property, potential (mis)matches can be
modeled and used for evaluations (e.g., classification of different platform configurations against
concerns’ coverage criteria).

• Process to Process: elements from two or more process models can be linked for user-defined
rationales. In particular, since DevOpsML does not prescribe the use of any process modeling
language, these links can be used to relate process models defined with different process modeling
languages6.

3.2 Modeling Testing Requirements, Processes, and Low-Code Platforms in DevOpsML

In this section, we adopt the DevOpsML conceptual framework [3] to model the testing features for low-
code platforms presented in [2] and reported in Table 1 in Section 2, together with the assessment of support
provided by Mendix, one of the five analyzed commercial LCDPs (Section 2.1.2).

In Figure 6, a BPMN-like process diagram is shown depicting the steps and related input/output artifacts,
according to the DevOpsML guidelines given in [3]. The DevOpsML-related steps and involved artifacts
will be detailed in the following subsections. In particular:
• Section 3.2.1 presents the specification of low-code testing features outlined in Table 1 using the

DevOpsML conceptual framework [3]. Testing features are represented as capabilities and concerns
(CC) and collected in libraries (CC libraries) conforming to the DevOpsML platform metamodel. This
step is expected to be performed by a Quality Assurance Engineer (QA Engineer), whom primary
concern is maximizing quality of final product.

• Section 3.2.2 discusses how to model the testing features supported by a LCDP in DevOpsML. We
choose to model testing features of the Mendix LCDP [8], in accordance with the information provided
in [2] and reported in Section 2.1.2. The Mendix LCDP and integrated third-party tools are collected
in tools and interfaces libraries (TI libraries)T conforming to the DevOpsML platform metamodel
(Figure 4). This step is expected to be performed by tool providers or tool experts in general, which
know tools’ capabilities and their available APIs.

• Section 3.2.3 discusses the modeling of DevOps continuous software engineering processes (CSE [1]
processes) addressing testing concerns, i.e., including engineering steps (e.g., unit testing) requiring
specific testing features. As a result, a continuous process model is obtained, including typical

5We keep the Linking metamodel simple on purpose. We do not show here the specialisation of ModelElement metaclass and
constraints to distinguish intra/inter-model links.

6Technical limitations to these scenarios apply if the integration mechanism does not support heterogeneous modeling
spaces [49].

19

LegendLow-code
testing

Features and
Values

(Table 1)

Mendix
Status

(Sec. 2.1.2)

Modeling
Low-Code Testing

Features
(Sec. 3.2.1)

Low-code
testing
CCLib

(Fig. 7, 14,
15, 16, 17)

Modeling
Testing Capabilities

of LCDPs
(Sec. 3.2.2)

Mendix
Testing
TILib

(Fig. 8,9)

Platform
Requirements

Modeling
(Sec. 3.2.4)

Example
required
testing
CCLib

(Fig. 11)

Platform Capabilities
Analysis

(Sec. 3.2.5)

DevOpsML
testing

Platform
model

(Fig.12)

DevOps Process and
DevOps Platform

Weaving
(Sec. 3.2.6)

QA
Engineer

START

Tool
Provider

Requirements
Engineer

DevOps
Engineer

Process
Engineer

Modeling
Continuous Software

Engineering
Processes
(Sec. 3.2.3)

Testing
Process
example
(Fig. 10)

START

DevOpsML Pool

Task
Collection

Data
Input

Data
Output

Data
Object

myTestingDevOps
:DevOpsML

(Fig.13)

Figure 6: BPMN diagram of the approach based on DevOpsML [3].

DevOps activities (e.g., continuous integration). A process model is expected to conform to a given
process modeling language. In [3], we chose SPEM [51]. This step is expected to be performed by
a process engineer, who is responsible for designing, implementing, controlling and optimizing the
CSE process.

• Section 3.2.4 model the platform requirements in order to support given testing concerns during a
CSE process. A collection of required testing capabilities specific to testing concerns are collected for
CC library. This step is expected to be performed by requirement engineers.

• Section 3.2.5 discusses the specification of platform requirements, based on the set of testing capabil-
ities defined in Section 3.2.1. As a result, candidate DevOpsML platform models can be created by
integrating elements from CC and TI libraries matching testing requirements. This step is expected
to be performed by DevOps engineers, who are able to use the resulting DevOpsML model to guide

20

the preparation of a working model-driven DevOps engineering environment.
• Finally, Section 3.2.6 discusses the combination of DevOps process with platform models representing

LCDPs and integrated third-party tools. Tools and their capabilities are mapped to typical DevOps
phases (see Figure 4). This step is expected to be performed by a DevOps engineer,

The engineering services required to support the approach modeled by the BPMN in Figure 6 will be
provided by a Continuous Software Engineering (CSE) service as shown in the overall architecture of the
Low Code Repository (see Deliverable D4.1).

NewLCTF
:Capability

name= “New
LCTF”
description=
“New Low-Code
Testing
Framework
(LCTF) dedicated
to LCDP”

general-testing-cclib:CapabilitiesAndConcerns

STS:
Concern

name= “Supported
Testing Scale”
description= “Defines
in which levels (the
behaviour of the
system can be tested”
target= PROCESS

TF
:Concern

name= “Testing
Framework”
description=
“About building a
test component”
target= PROCESS

ThirdPartyQA:
Capability

name= “Third
Party QA”
description=
“Leveraging third-
party frameworks
(e. g., Selenium,
TestNG)”

VS
:Concern

name= “Verification
Support”
description= “Specifies
the characteristics
(functional and non-
functional) of the
system that can be
verified”
target= PROCESS

TestingOpeness
:Concern

name= “Testing Openness”
description= “Openness to
third-party testing tools. It
is a good practice to
enable the test component
to integrate with other
testing tools since it allows
reusing the existing
resources”
target= PROCESS

ImpExpTest
:Capability

name= “Import/Export
Testing sources”
description=
“import/export
techniques to reuse
testing artifacts of

other sources”

WebTechIntTest
:Capability

name= “Web
Technologies
Integration Tests”
description=
“completely open test
integration via web
technologies”

E2ETest
:Capability

name= “End to End
test”
description= “End to
End test”

UnitTest
:Capability

name= “Unit test”
description= “Unit
test”

APITest :Capability

name= “API test”
description= “API test”

IntegrationTest
:Capability

name= “API test”
description= “API test”

UITest
:Capability

name= “UI test”
description= “UI test”

FunctionalityTest
:Capability

name= “Functionality
Test”
description=
“Functionality Test”

PerformanceTest
:Capability

name= “Performance
Test”
description=
“Performance Test”

SecurityTest
:Capability

name= “Security Test”
description= “Security

Test”

UsabilityTest
:Capability

name= “Usability Test”
description= “Usability
Test”

ReliabilityTest
:Capability

name= “Reliability
Test”
description=
“Reliability Test”

CompatibilityTest
:Capability

name= “Compatibility
Test”
description=
“Compatibility Test”

Capabilities

Concerns

Figure 7: General Capabilities and Concerns libraries. Modeled on General features of Table 1

3.2.1 Modeling Low-Code Testing Features.

One of the very first steps7 consists in creating libraries of testing capabilities and concerns (CC Lib). The
CC library can be created from the information collected in Table 1 on testing. In Table 1 five categories of
testing features for LCDP have been identified (General, Test Design, Test Generation, Test Execution, and
Test Evaluation), together with a collection of concrete testing features per category (see Table 1).

The following modeling rules have been applied to (manually) create a CC library from the textual
descriptions given in Table 1:

7The other one is the process modeling, which can be done concurrently, according to the DevOpsML guideline [3]

21

• For each Category in Table 1, a separated CC library model artifact has to be created. Since we are
considering testing capabilities and concerns, we add the suffix testing-cclib to the resulting
library. For example, a General-Testing CC library model is created containing an instance of the
CapabilitiesAndConcerns metaclass. The resulting artifact is a platform model of reusable platform
elements [3], i.e., a library, conforming to the platform metamodel in Figure 4.

• For each Feature in Table 1, a new instance of the Concern metaclass is created with the same name
of feature and an optional description. The concern is related to the support of testing process in
low-code platforms and for this reason, the value process from the PPRAspect enumeration [46] is
chosen for the enumerated property target.

• For Possible Values in Table 1, instances of the Capability metaclass are created with the same name
and an optional textual description

The informal mapping rules introduced above are applied during the Create CC Libraries step in the
BPMN diagram in Figure 6 A separated CC Lib is created for each low-code testing feature category in
Table 1. The resulting CC library for the General testing feature category is shown in Figure 7 using an
object diagram-like notation. The CC libraries of the remaining testing feature categories are shown in the
Appendix.

It is worth noting we explicitly keep undefined the properties status and devOpsPhases of any capabilities
and concerns (available as specialisation of the abstract metaclass PlatformElement, see Figure 4) on purpose.

The status property is an optional, single-valued property (multiplicity [0..1], see Figure 4), whose
allowed values are determined by the literals of the Status enumeration. The status will be determined
later in the BPMN in Figure 6 by requirements engineers and tool providers to model testing features in
requirement specifications (see Section 3.2.4) and tool descriptions (see Section 3.2.2), respectively [3].

Similarly, the devOpsPhases is an optional, multi-valued property (multiplicity [*], see Figure 4), whose
allowed values are determined by the literals of the DevOpsPhase enumeration. It is used to bound a
particular platform element (i.e., a capability, a concern, a tool, an interface) to one or more typical DevOps
phases. Keeping devOpsPhases unspecified in the resulting CC library allows to preserve the genericity of
the library w.r.t. software processes and tools, which are not yet taken into consideration at this stage of
the approach (see Figure 6).

3.2.2 Modeling Testing Capabilities of LCDPs.

In [2], the support to testing features (see Table 1) of five commercial LCDPs is discussed and an evaluation
is given to the reader. According to the goal of this deliverable (”The deliverable will also define how low-code
testing integrates in a process for DevOps in low-code engineering”), those LCPDs represent candidate tools to
be integrated in a DevOps platform (see Figure 3) whose services can support a continuous software process
(CSE) [1].

In this regard, DevOpsML [3] allows the modeling of tools to be integrated in such DevOps plat-
forms, together with provided/required interfaces and provided/required capabilities to address concerns
of interests, which are, in our case low-code testing features [2].

Therefore, according to the available documentation sources (e.g., publications [55, 2]) or LCDPs user
guides [8, 9, 10, 11, 12]) a model-driven artifact can be (manually) created that conforms to the DevOpsML
platform metamodel shown in Figure 4.

Figure 8 shows a DevOpsML Platform Model for the Mendix platform. A similar model can be created
for each LCPD and collected in a Tools and interfaces (TI) library to be reused across different configurations
of DevOps platforms.

In particular, the following modeling rules have been applied in order to create a TI library for LCDPs
as instance of DevOpsML platform metamodel in Figure 4:
• A ToolAndInterface element is created as the top-level element of a TI library. In Figure 8 a mendix-tool-

set TI library is created.
• The TI library is populated with Tools, with a name and an optional description. Figure 8 includes the

Mendix, Selenium, SoapUI and TestNG Tool elements, which together represent the low-code testing
framework (LCTF) provided by Mendix (see Section 2.1.2).

• If available, Interface elements are created to represent available tool interfaces (e.g., APIs, graphical
user interfaces, command line interfaces, according to the InterfaceType enumeration). In the given
example, we skipped the modeling of Mendix interfaces for the sake of readability.

• For each Tool in the TI library, the CC libraries of testing features introduced in Section 3.2.1 are im-
ported to model tool-specific provided and required capabilities and concerns. Figure 8 shows the CC
libraries imported for Mendix, namely general-testing-cclib-mendix, test-design-testing-cclib-mendix, test-
generation-testing-cclib-mendix, test-execution-testing-cclib-mendix, test-evaluation-testing-cclib-mendix. The
same step has to be repeated for Selenium, SoapUI and TestNG tools.

• If a testing feature is supported by a given Tool, the corresponding Capability is updated by assigning
the literalprovided to the status property. Similarly, if a testing feature is explicitly stated as provided
by integration with third-party tools, the corresponding Capability is updated by assigning the literal

22

mendix:Tool

name= “Mendix”
description= “for application development on the
web, mobile, and IoT platforms”

mendix-tool-set:ToolsAndInterfaces

NewLCTF
:Capability

name= “New LCTF”
description= “New Low
Code Testing Framework
(LCTF) dedicated to
LCDP”
status= PROVIDED

general-testing-cclib-selenium
:CapabilitiesAndConcerns

STS
:Concern

name= “Supported
Testing Scale”
description=
“Supported Testing
Scale”
status= PROVIDED
target= PROCESS

ThirdPartyQA
:Capability

name= “ThirdPartyQA”
description= “Leveraging
third-party frameworks
(e. g., Selenium,
TestNG)”
status= PROVIDED

ImpEx-Test
:Capability

name= “Import/Export
Testing sources”
description=
“import/export
techniques to reuse
testing artifacts of
other sources”
status= PROVIDED FunctionalityTest

:Capability

name=
“Functionality Test”
description=
“Functionality Test”
status= PROVIDED

IntegrationTest
:Capability

name= “Integration
Test”
description=
“IntegrationTest”
status= REQUIRED

APITest
:Capability

name= “API Test”
description= “API Test”
status= REQUIRED

UITest
:Capability

name= “UI Test”
description= “UI Test”
status= REQUIRED

UnitTest
:Capability

name= “Unit Test”
description= “Unit Test”
status= PROVIDED

E2ETest
:Capability

name= “E2E Test”
description= “E2E Test”
status= REQUIRED

VS
:Concern

name= “Verification
Support”
description= “Specifies
the characteristics
(functional and non-
functional) of the system
that can be verified”
status= PROVIDED
target= PROCESS

TestingOpenness
:Concern

name= “Testing Openness”
description= “Openness to
third-party testing tools.
enabling the test component
to integrate with other testing
tools since it allows reusing
the existing resources”
status= PROVIDED
target= PROCESS

WebTechIntTest
:Capability

name= “Web Tech.
Integration Tests”
description=
“completely open test
integration via web-
technologies”
status= PROVIDED

PerformanceTest
:Capability

name= “Performance Test”
description= “Performance
Test”
status= PROVIDED

TF
:Concern

name= “Testing
Framework”
description= “About
building a test
component”
status= PROVIDED
target= PROCESS

test-design-testing-cclib-mendix
:CapabilitiesAndConcerns

test-generation-testing-cclib-mendix
:CapabilitiesAndConcerns

test-execution-testing-cclib-mendix
:CapabilitiesAndConcerns

test-evaluation-testing-cclib-mendix
:CapabilitiesAndConcerns

Capabilities

Concerns

selenium:Tool

name= “Selenium”
description= “Playback tool for
authoring functional tests”

soapUI:Tool

name= “SoapUI”
description= “Open-source web
service testing application for
Simple Object Access Protocol
(SOAP) and representational
state transfers (REST)”

testNG:Tool
name= “TestNG”
description= “Testing
framework for the Java
programming language”

general-testing-cclib-mendix:CapabilitiesAndConcerns

E2ETest
:Capability

name= “E2E Test”
description= “E2E Test”
status= PROVIDED

UITest
:Capability

name= “UI Test”
description= “UI Test”
status= PROVIDED

general-testing-cclib-soapui
:CapabilitiesAndConcerns

APITest
:Capability

name= “API Test”
description= “API Test”
status= PROVIDED

general-testing-cclib-testng
:CapabilitiesAndConcerns

IntegrationTest
:Capability

name= “Integration
Test”
description=
“IntegrationTest”
status= PROVIDED

Figure 8: Mendix provided and required capabilities and concerns

required to the status property. Figure 8 shows the provided and required capabilities for the
Mendix LCDP as evaluated and discussed in Section 2.1.2. The evaluation of testing features of other
LCDPs are given in [2]. In this context, Selenium, SoapUI and TestNG tools are third-party tool
providing capabilities to Mendix. Finally, if a testing feature, i.e., a capability from the imported
testing CC library is not evaluated, i.e., no value is assigned to its status property, it is removed from

23

the set of imported elements8.
• Finally, links among provided and required capabilities of integrated tools, as collected in the Mendix-

Toolset TI library, are established by matching required Mendix capabilities to the corresponding
provided ones by integrated third-party tools (Selenium, SoapUI and TestNG). In DevOpsML this
model weaving [42] step is supported by links collected in a separated Link Model conforming to the
linking metamodel introduced in Section 3.1.3. In particular, since the CC library and the TI library
depicted in Figures 7 and 8 are platform models conforming to the DevOpsML platform metamodel,
the links are instances of the Platform2Platform metaclass. (See Figure 9).

mendix:Tool

name= “Mendix”
description= “for application
development on the web,
mobile, and IoT platforms”

mendix-tool-set
:ToolsAndInterfaces

general-testing-cclib-selenium
:CapabilitiesAndConcerns

STS
:Concern

name= “Supported
Testing Scale”
description=
“Supported Testing
Scale”
status= PROVIDED
target= PROCESS

IntegrationTest
:Capability

name= “Integration
Test”
description=
“IntegrationTest”
status= REQUIRED

APITest
:Capability

name= “API Test”
description= “API Test”
status= REQUIRED

UITest
:Capability

name= “UI Test”
description= “UI Test”
status= REQUIRED

E2ETest
:Capability

name= “E2E Test”
description= “E2E Test”
status= REQUIRED

selenium:Tool

name= “Selenium”
description= “Playback tool for
authoring functional tests”

soapUI:Tool

name= “SoapUI”
description= “Open-source web
service testing application for
Simple Object Access Protocol
(SOAP) and representational
state transfers (REST)”

testNG:Tool
name= “TestNG”
description= “Testing
framework for the Java
programming language”

general-testing-cclib-mendix:CapabilitiesAndConcerns

E2ETest
:Capability

name= “E2E Test”
description= “E2E Test”
status= PROVIDED

UITest
:Capability

name= “UI Test”
description= “UI Test”
status= PROVIDED

general-testing-cclib-soapui
:CapabilitiesAndConcerns

APITest
:Capability

name= “API Test”
description= “API Test”
status= PROVIDED

general-testing-cclib-testng
:CapabilitiesAndConcerns

IntegrationTest
:Capability

name= “Integration
Test”
description=
“IntegrationTest”
status= PROVIDED

RequirementsMatchingLinks
:Link Model

UITestLink
:Platform2Platform

name= “UI Test Mapping”

E2ETestLink
:Platform2Platform

name= “E2E Test Mapping”

APITestLink
:Platform2Platform

name= “API Test Mapping”

IntegrationTestLink
:Platform2Platform

name= “IntegrationI Test
Mapping”

Figure 9: Linking Mendix third-party required capabilities with capabilities provided by external tools

3.2.3 Modeling Continuous Software Engineering Processes.

Figure 10 shows a DevOps process model created using SPEM as software process modeling language
(SPML). In particular, following the DevOpsML guideline given in [3], an high-level DevOps pipeline of

8It is worth noting that this approach is suitable only for import-by-value scenarios i.e., when the imported libraries are copied
in the recipient models. In an import-by-reference scenario, deleting an element from a reusable library would cause inconsistencies
in other recipient models.

24

Pipeline:SPEM

Release
Refinement

:SPEM

QA Refinement:SPEM

Figure 10: A given DevOps process example

SPEM activities (plan, model/code, build, QA, release, deploy, operate, and monitor) are further refined to
show QA and release sub-activities.

In particular, in this deliverable, we are interested in model-driven continuous software engineering
(CSE) processes, i.e., engineering processes suitably combining DevOps [36] and MDE [42] principles and
practices [1].

Finally, it is worth noting that the considered CSE process (model) can be of arbitrary complexity. The
process model is a required input for the requirements engineer to suitably map tools, capabilities and
concerns, possibly available in reusable CC and TI libraries, to a specific DevOps phase (by setting the
enumerated devOpsPhase property, see Figure 11).

myPlatQARequirements:CapabilitiesAndConcerns

STS:
Concern

name= “Supported Testing Scale”
description= “Defines in which
levels (the behaviour of the system
can be tested”
devOpsPhases= [QA]
status= REQUIRED
target= PROCESS

VS
:Concern

name= “Verification Support”
description= “Specifies the
characteristics (functional and
non-functional) of the system
that can be verified”
devOpsPhases= [QA, RELEASE]
status= REQUIRED
target= PROCESS

UnitTest
:Capability

name= “Unit test”
description= “Unit test”
devOpsPhases= [QA]
status= REQUIRED

IntegrationTest
:Capability

name= “API test”
description= “API test”
devOpsPhases= [QA]
status= REQUIRED

FunctionalityTest :Capability

name= “Functionality Test”
description= “Functionality Test”
devOpsPhases= [QA]
status= REQUIRED

PerformanceTest :Capability

name= “Performance Test”
description= “Performance Test”
devOpsPhases= [RELEASE]
status= REQUIRED

Capabilities

Concerns

Figure 11: Example of required testing capabilities and concerns for a concrete DevOps. They should be
provided by a Requirements Engineer.

3.2.4 Platform Requirements Modeling

In DevOpsML, a requirement specification activity is possible by modeling and collecting required (sta-
tus=required) PlatformElements (i.e., capabilities, concerns, tools, and interfaces). A coarse-grained cat-
egorization of requirements is possible in process, platform, and resource requirements [46], according to
the value assigned to target property of any Concern of interest (see Figure 4).

In order to perform this step, a requirements engineer should rely on i) a existing set of CC libraries,
i.e., capabilities and concerns of interests, and ii) process model(s) (see Figure 10). Once this information is
available, she can specify process requirements in terms of a collection of PlatformElements.

Figure 11 shows a possible requirement specification for low-code testing framework (LCTF) using
the CC libraries describing low-code testing features. In particular, we are considering four capabilities,
i.e., UnitTest, IntegrationTest, PerformanceTest, and FunctionalityTest), which are required in order to address
testing concerns (i.e. low-code testing features in Table 2.1), i.e.,testing scale (STS) and verification support
(VS) of the corresponding SPEM activities depicted in the process model (see Figure 10). It is worth noting

25

that, at this step, the links between the platform requirements and a CSE process (Figure 10) are not yet
explicitly modeled.

mendix:Tool

name= “Mendix”
description= “For application development
on the web, mobile, and IoT platforms”

mendix-tool-set:ToolsandInterfaces

general-testing-cclib-mendix:CapabilitiesAndConcerns

STS
:Concern

name= “Supported
Testing Scale”
description=
“Supported Testing
Scale”
status= PROVIDED
target= PROCESS

FunctionalityTest
:Capability

name=
“Functionality Test”
description=
“Functionality Test”
status= PROVIDED

IntegrationTest
:Capability

name=
“Integration Test”
description=
“IntegrationTest”
status= REQUIRED

UnitTest
:Capability

name= “Unit Test”
description= “Unit
Test”
status= PROVIDED

VS
:Concern

name= “Verification
Support”
description= “Specifies
the characteristics
(functional and non-
functional) of the system
that can be verified”
status= PROVIDED
target= PROCESS

PerformanceTest
:Capability

name= “Performance Test”
description= “Performance
Test”
status= PROVIDED

STSMatching
:Platform2Platform

name= “STS matching”

STS
:Concern

name= “Supported
Testing Scale”
description=
“Supported Testing
Scale”
devOpsPhases= [QA]
status= REQUIRED
target= PROCESS

myPlatQARequirements:CapabilitiesAndConcerns

IntegrationTestMatching
:Platform2Platform

name= “Integration test
matching”

UnitTestMatching
:Platform2Platform

name= “Unit test matching”

UnitTest
:Capability

name= “Unit Test”
description= “Unit Test”
devOpsPhases= [QA]
status= REQUIRED

IntegrationTest
:Capability

name= “Integration
Test”
description=
“IntegrationTest”
devOpsPhases= [QA]
status= REQUIRED

VS
:Concern

name= “Verification Support”
description= “Specifies the characteristics
(functional and non-functional) of the
system that can be verified”
devOpsPhases= [QA, RELEASE]
status= REQUIRED
target= PROCESS

PerformanceTest
:Capability

name= “Performance Test”
description= “Performance
Test”
devOpsPhases= [RELEASE]
status= REQUIRED

FunctionalityTest
:Capability

name= “Functionality
Test”
description=
“Functionality Test”
devOpsPhases= [QA]
status= REQUIRED

VSMatching
:Platform2Platform

name= “VS matching”

PerformanceTestMatching
:Platform2Platform

name= “Performance test
matching”

FunctionalityTestMatching
:Platform2Platform

name= “Functionality test
matching”

QACCMatchingLinks
:Link Model

myPlat :Platform
name= “My Platform”testNG:Tool

name= “TestNG”
description= “Testing
framework for the Java
programming language”

general-testing-cclib-testng
:CapabilitiesAndConcerns

IntegrationTest
:Capability

name= “Integration
Test”
description=
“IntegrationTest”
status= PROVIDED

RequirementsMatchingLinks
:Link Model

IntegrationTestLink
:Platform2Platform

name= “IntegrationI Test
Mapping”

Figure 12: Requirement and provisioning matching.

3.2.5 Platform Capabilities Analysis

During this step, tools are evaluated w.r.t. their capabilities to support a given CSE process and to be
eventually integrated in a DevOps platform (see Figure 3).

26

In particular, tools’ provided 9 capabilities and concerns are compared with required ones, assessed
during the Platform Requirement Modeling step (Section 3.2.4).

The analysis consists in mapping i) required Capabilities for process Concerns with ii) Capabilities
provided by candidate Tools.

In DevOpsML, the mapping is realised via model weaving by creating links between the matched model
elements.

This step is exemplified by Figure 12. A candidate Platform (myPlat) is modeled by combining CC
and TI libraries, i.e., separated and reusable Platform Models via Platform2Platform links stored in Link
Models. As a result a composite Platform Model is obtained.

In particular, Figure 12 represents a candidate Platform myPlat where the Mendix CC library of Figure 8
are linked, via *-Matching Platform2Platform links, with platform requirements (i.e., required capabilities
and concerns) of Figure 11.

It is worth noting how the integration test Capability is not directly provided by Mendix (the status of
the IntegrationTest capability in the general-testing-cclib-mendix CC library is required) but the integrated
third-party tool TestNG. For this reason an additional Platform2Platform link is shown, matching the
required and provided capabilities from Mendix and TestNG CC libraries, respectively.

3.2.6 DevOps Process and DevOps Platform Weaving

FunctionalityTest:Capability

name= “Functionality Test”
description= “Functionality Test”
status= PROVIDED

IntegrationTest:Capability

name= “Integration Test”
description= “IntegrationTest”
status= REQUIRED

UnitTest :Capability

name= “Unit Test”
description= “Unit Test”
status= PROVIDED

PerformanceTest:Capability

name= “Performance Test”
description= “Performance Test”
status= PROVIDED

general-testing-cclib-mendix:CapabilitiesAndConcerns

Process Capabilities Links :Link Model

UnitTest :Process2Platform

name= “Unit Test Link”

PerformanceTest: Process2Platform

name= “Releasae Refinement Link”

IntegrationTest :Process2Platform

name= “Integration Test Link”

FunctionalTest :Process2Platform

name= “Functional Test Link”

Pipeline:SPEM

Release
Refinement

:SPEM

QA Refinement:SPEM

general-testing-cclib-testing :CapabilitiesAndConcerns

IntegrationTest :Capability

name= “Integration Test”
description= “IntegrationTest”
status= PROVIDED

IntegrationTestLink:Platform2Platform
name= “IntegrationI Test Mapping”

RequirementsMatchingLinks :Link Model

Figure 13: DevOpsML Model: mapping DevOps Process with DevOps platform models.

The last step of the BPMN in Figure 6 concerns the combination of the configured platform with the
supported DevOps process. The resulting artifact is a DevOpsML Model [3] depicted in Figure 13.

The Process Model and Platform Model(s) are combined again through the model weaving integration
mechanisms provided in DevOpsML [3], i.e., with a Link Model (Process Capabilities Links), where four
Process2Platform links match the Mendix testing capabilities (both directly provided or provided via third-
party tools) with the elements of the process model, in our case SPEM activities.

9directly or via integrated tools

27

4 Conclusion

Low-code domain is more and more popular but there exist limited academic resources for low-code
testing. Testing is a mandatory step of any development process. The integration of DevOps principles and
practices in low-code engineering platforms (LCEP) is gaining attention by the research community since
LCE is both concerned by (i) the development of low-code software and (ii) its operation on the cloud and
using dedicated repository (cf deliverable D4.1).

We performed several analyses considering testing requirements in LCDPs, published them [2], and
reported them in this deliverable. We initially discovered the testing facilities embedded in five well-known
commercial LCDPs. Afterward, we proposed a set of 16 features for low-code testing which can be used
as criteria for comparing several low-code testing components, and as a guideline for LCDP developers
in building new ones. Accordingly, we organized the result of our analysis on the testing component of
Mendix LCDP based on the proposed feature list.

We outlined the first prototype of DevOpsML, a model-driven framework for modeling DevOps pro-
cesses and platforms and their weaving. In this deliverable, we show how the DevOpsML framework
can be used to create and combine testing processes and low-code platform specifications to support these
testing features.

Our investigations lead us to the identification of existing challenges in low-code testing. We redefined
them from a research point of view by providing the state-of-the-art in three main categories including, the
role of citizen developer and her low-level technical knowledge in the testing activities, the importance and
consequently the challenges in offering high-level test automation, and leveraging the cloud for executing
tests alongside supporting testing of cloud-based applications. For each category, we also propose oppor-
tunities for future research in low-code testing, such as DSL extension with testing elements, customization
of MBT for low-code testing, and supporting the cloud in MBT approaches.

As our future work, we will initially work on the challenges of the first category. At the moment, we
are defining a running example to show how the DSL extension algorithm would work in practice and
how different kinds of DSLs (i. e., interpreted and compiled) could be supported. Afterwards, we will
implement the generic extension algorithm, so different system DSLs can be extended with an appropriate
test DSLs satisfying LCE objectives [4]. Finally, supporting the cloud focusing on the operation part of
DevOps, and building tools for generating cloud-based low-code testing component for a given LCDP, are
in our future research plan.

28

Appendix

Capabilities and Concerns libraries.

This section contains the Capabilities and Concerns libraries generated following the instructions given in
Section 3.2.1.

In Figure 14 we represent the CC library test-design-testing-cclib. This library is the model of
the features under the category Test Design in Table 1.

test-design-testing-cclib:CapabilitiesAndConcerns

Capabilities

Concerns RTD
:Concern

name= “Role of Test
Designer”
description= “Several
roles can be
supported in the test
design phase and The
Role of Test Designer
feature aimed at
defining them”
target= PROCESS

CTD:
Concern

name= “Collaboration
Test Design”
description= “To enable
multiple people from
different backgrounds to
collaborate on the
testing of the same
application”
target= PROCESS

TestDesignTecniques
:Concern

name= “Test Design
Techniques”
description= “defines the
method of test case
definition. If the technique
is too technical, the citizen
developer cannot
collaborate in test design.”
target= PROCESS

MBT
:Capability

name= “Model Based
Testing”
description= “Modelling
the System based on a
DSL and autogenerating
the executable test cases
from it”

VG_TC
:Capability

name= “Visual Graphical
Modelling Test Cases”
description=
“Visual/Graphical
modeling for designing
test cases as graphical
test models”

REC_REP
:Capability

name= “Record and
Replay”
description= “Record and
Replay for automated UI
testing

AI_TC
:Capability

name= “Artificial
Intelligence Test Cases”
description= “Automatic
recognition of test cases”

KW_TW
:Capability

name= “Keyword Driven
Test Writing”
description= “Keyword-
driven for writing tests in
natural languages”

DDT
:Capability

name= “Data-Driven
Testing”
description= “Separating
test data from test cases
and consequently offering
reusability”

BBD-TDD
:Capability

name= “Behaviour-Driven
Development /Test-Driven
Development ”
description= “For
providing traceability from
system requirements to
test cases, from the initial
steps of the application
development lifecycle”

ArtifactTestDesign
:Concern

name= “Artifacts in Test
Design”
description= “Used/Produced
Artifacts in Test Design. For
instance, system
requirements and/or system
models can be used to derive
tests directly from them or to
be linked to the test cases”
target= PROCESS

SystemModels
:Capability

name= “System Models”
description= “e. g., Data
models, Logic models, UI
pages”

TestReusability
:Concern

name= “Test Reusability”
description= “For
example by providing the
possibility of reusing test
data/test cases of other
sources, offering reusable
test cases from a pre-
defined repository.”
target= PROCESS

ReuseOthSrcTD
:Capability

name= “Reuse Other
Source Test Data”
description=
“Reusing test data of
other sources”

ReuseOthSrcTC
:Capability

name= “Reuse Other
Source Test Cases”
description=
“Reusing test cases

of other sources”

ReuseTCFromComponents
:Capability

name= “Reuse Test Cases of
Test Compopnent”
description= “Reusing test
cases provided by the testing
component”

NewTCSpecLCDP
:Capability

name= “New LCDP
specific reusable TC
definition”
description= “The
possibility to define new
test cases that can be
reused in a specific LCDP”

NewTCLCDP
:Capability

name= “New reusable TC
definition”
description= “The
possibility to define new
test cases that can be
reused in various LCDPs”

ContinuousFeedback
:Capability

name= “Continuous
feedback”
description= “Continuous
feedback”

CollaborativeTestDesign
:Capability

name= “Collaborative Test
Design”
description= “Collaborative
Test Design”

CitizenDeveloperTester
:Capability

name= “Citizen Developer
Tester”
description= “Citizen

Developer Tester”

ITDeveloperTester
:Capability

name= “IT Developer
Tester”
description= “IT
Developer Tester”

TechnicalTester
:Capability

name= “Technical
Tester”
description=
“Technical Tester”

SystemRequirement
:Capability

name= “System
Requirement”
description= “System
Requirement”

TestSpecification
:Capability

name= “Test
Specification”
description= “Test
Specification”

TestModels
:Capability

name= “Test Models”
description= “Test

Models”

TestData
:Capability

name= “Test Data”
description= “Test Data”

Figure 14: Test Design Capabilities and Concerns libraries. Modeled on Test Design features of Table 1

In Figure 15 we represent the CC library test-generation-testing-cclib. This library is the
model of the features under the category Test Generation in Table 1.

In Figure 16 we represent the CC library test-execution-testing-cclib. This library is the

29

test-generation-testing-cclib:CapabilitiesAndConcerns

ATG
:Concern

name= “Automation Test Generation”
description= “specifies the level of
provided automation in generating tests”
target= PROCESS

HighTestGenAut
:Capability

name= “High Test
Generation Automation”
description= “most of the
steps are automated and
only simple tasks have to
be done manually”

MediumTestGenAut
:Capability

name= “Medium Test
Generation Automation”
description= “some tasks
are automated but some
others have to be
performed manually (e. g.,
definition of test data)”

TSL
:Concern

name= “Test Script Language”
description= “defines which language is
supported by low-code testing
component for scripting tests”
target= PROCESS

LCDP-DSL-Test
:Capability

name= “LCDP Test Specific DSL”
description= “New executable
Test-specific DSLs defined by the
LCDP”

DSL-Test
:Capability

name= “Test Specific
language”
description= “Existing
test-specific languages
such as TTCN-3”

PL-Test
:Capability

name= “Test with
Programming Language”
description= “Programming
languages (e. g., Java”

Capabilities

Concerns

Figure 15: Test Generation Capabilities and Concerns libraries. Modeled on Test Generation features of
Table 1

model of the features under the category Test Execution in Table 1.

test-execution-testing-cclib:CapabilitiesAndConcerns

ATC:Concern

name= “Automation of Test
Configuration”
description= “level of automation
provided by the testing component for
performing test configuration”
target= PROCESS

HighTestConfAut :Capability

name= “High Test Configuration
Automation”
description= “High (support no-code)”

MediumTestConfAut :Capability

name= “Medium Test Configuration
Automation”
description= “Medium (support low-code)”

LowTestConfAut :Capability

name= “Low Test Configuration
Automation”
description= “Low (support manual
coding)”

DistributedTextExecution:Concern

name = “Distributed Text Execution”
description = “Distributed Text Execution”
target = PROCESS

DistributedTextExecution:Capability

name= “Distributed Text Execution”
description= “Distributed Text Execution”

TE-TS:Concern

name= “Test Execution
Tool/Service”
description= “defines which tool or
service is used in the test
component for running executable
test cases”
target= PROCESS

LCDP-Test-Execution:Capability

name= “LCDP Test Execution Tool”
description= “New tools provided by LCDP
for Test Execution”

Third-Party-Test-Execution:Capability

name= “Third Party Test Execution”
description= “Third Party Test Execution”

TE-Platform:Concern

name= “Test Execution Platform”
description= “It specifies on which
platforms the tests can be run”
target= PROCESS

ProviderCloudTestPlat:Capability

name= “Provider Cloud Test Execution Platform”
description= “Provider Cloud Test Execution Platform”

PublicCloudTestPlat:Capability

name= “Public Cloud Test Execution Platform”
description= “Public Cloud Test Execution Platform”

On-Prem-TestPlat:Capability

name= “On Premises Test Execution Platform”
description= “On Premises Test Execution Platform”

StandaloneTestPlat:Capability

name= “Standalone Execution Platform”
description= “Standalone Test Execution Platform”

Capabilities
Concerns

Figure 16: Test Execution Capabilities and Concerns libraries. Modeled on Test Execution features of Table 1

In Figure 17 we represent the CC library test-evaluation-testing-cclib. This library is the
model of the features under the category Test Evaluation in Table 1.

30

test-evaluation-testing-cclib:CapabilitiesAndConcerns

Test-Res-Ev-Tech:Concern
name= “Test Result Evaluation
Technique”
description= “to specify which
techniques are used for evaluating test
results”
target= PROCESS

Comparison-Ev-Tech:Capability
name= “Comparison Evaluation
Technique”
description= “Evaluating test results by
Comparison Evaluation Technique”

Visual-Text-Rep:Capability
name= “Visual/textual reporting”
description= “Evaluating test results
through Visual/textual reporting”

Monitor-Ev-Tech:Capability

name= “Monitoring Evaluation
Technique”
description= “Evaluating test results
by Monitoring”

AnalyzeTrace:Capability

name= “Analyse Execution Traces”
description= “Evaluating test results
by Analysing execution traces”

Capabilities

Concerns

Figure 17: Test Evaluation Capabilities and Concerns libraries. Modeled on Test Evaluation features of
Table 1

31

References
[1] Jokin Garcia and Jordi Cabot. Stepwise adoption of continuous de-

livery in model-driven engineering. In Jean-Michel Bruel, Manuel
Mazzara, and Bertrand Meyer, editors, Software Engineering Aspects
of Continuous Development and New Paradigms of Software Production
and Deployment, pages 19–32, Cham, 2019. Springer International
Publishing.

[2] Faezeh Khorram, Jean-Marie Mottu, and Gerson Sunyé. Chal-
lenges and opportunities in low-code testing. In Proceedings of the
23rd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings, MODELS ’20, New
York, NY, USA, 2020. Association for Computing Machinery.

[3] Alessandro Colantoni, Luca Berardinelli, and Manuel Wimmer.
Devopsml: towards modeling devops processes and platforms.
In Esther Guerra and Ludovico Iovino, editors, MODELS ’20:
ACM/IEEE 23rd International Conference on Model Driven Engineering
Languages and Systems, Virtual Event, Canada, 18-23 October, 2020,
Companion Proceedings, pages 69:1–69:10. ACM, 2020.

[4] Massimo Tisi, Jean-Marie Mottu, Dimitrios S. Kolovos, Juan
De Lara, Esther M Guerra, Davide Di Ruscio, Alfonso Pieranto-
nio, and Manuel Wimmer. Lowcomote: Training the Next Gener-
ation of Experts in Scalable Low-Code Engineering Platforms. In
STAF 2019 Co-Located Events Joint Proceedings: 1st Junior Researcher
Community Event, 2nd International Workshop on Model-Driven En-
gineering for Design-Runtime Interaction in Complex Systems, and 1st
Research Project Showcase Workshop co-located with Software Technolo-
gies: Applications and Foundations (STAF 2019), CEUR Workshop
Proceedings (CEUR-WS.org), Eindhoven, Netherlands, July 2019.

[5] Paul Vincent, Kimihiko Lijima, Mark Driver, Jason Wong, and
Yefim Natis. Magic quadrant for enterprise low-code application
platforms. Technical report, February 2019.

[6] John R Rymer and Rob Koplowitz. The forrester waveTM: Low-
code development platforms for ad&d professionals. Technical
report, March 2019.

[7] Mary Shaw. What makes good research in software engineering?
International Journal on Software Tools for Technology Transfer, 4(1):1–
7, 2002.

[8] Mendix Technology. Where thinkers become makers, 2020.
[9] Microsoft. The world needs great solutions, build yours faster,

2020.
[10] Salesforce. Build apps on the customer 360 platform with no-code

tools and take your crm to the next level, 2020.
[11] Kony Inc. Leading multi experience development platform, 2020.
[12] Outsystems. Innovate with no limits, 2020.
[13] Mendix Technology. Testing, 2020.
[14] Cédric Beust and Hani Suleiman. Next generation Java testing:

TestNG and advanced concepts. Pearson Education, 2007.
[15] Selenium. Selenium automates browsers. that’s it!, 2020.
[16] International Organization for Standardization. Iso/iec 25010:2011-

systems and software engineering- systems and software quality
requirements and evaluation (square)- system and software qual-
ity models, 2011. Available in electronic form for online purchase
at https://www.iso.org/standard/35733.html.

[17] Mendix Technology. Quality add-ons guide, 2020.
[18] Bart Meyers, Joachim Denil, István Dávid, and Hans Vangheluwe.

Automated testing support for reactive domain-specific modelling
languages. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Software Language Engineering, pages 181–194. Asso-
ciation for Computing Machinery, 2016.

[19] Martin Fowler. Domain-specific languages. Pearson Education, 2010.
[20] Mendix Technology. Microflows, 2020.
[21] Outsystems. How to automate unit testing and api testing, 2020.
[22] Bart Meyers, Romuald Deshayes, Levi Lucio, Eugene Syriani, Hans

Vangheluwe, and Manuel Wimmer. Promobox: a framework for
generating domain-specific property languages. In International
Conference on Software Language Engineering, pages 1–20. Springer,
2014.

[23] B. Meyers, H. Vangheluwe, J. Denil, and R. Salay. A framework for
temporal verification support in domain-specific modelling. IEEE
Transactions on Software Engineering, 46(4):362–404, 2020.

[24] Philip Makedonski, Gusztáv Adamis, Martti Käärik, Finn Kristof-
fersen, Michele Carignani, Andreas Ulrich, and Jens Grabowski.
Test descriptions with etsi tdl. Software Quality Journal, 27(2):885–
917, 2019.

[25] Joachim Herschmann, Thomas Murphy, and Jim Scheibmeir.
Magic quadrant for software test automation. Technical report,
November 2019.

[26] Maicon Bernardino, Elder M Rodrigues, Avelino F Zorzo, and Lu-
ciano Marchezan. Systematic mapping study on mbt: tools and
models. IET Software, 11(4):141–155, 2017.

[27] Antonia Bertolino, Guglielmo De Angelis, Micael Gallego, Boni
Garcı́a, Francisco Gortázar, Francesca Lonetti, and Eda Marchetti.
A systematic review on cloud testing. ACM Computing Surveys,
52(5):1–42, 2019.

[28] A. D. Francesco, C. D. Napoli, M. Giordano, G. Ottaviano,
R. Perego, and N. Tonellotto. A soa testing platform on the cloud:
The midas experience. In 2014 International Conference on Intelligent
Networking and Collaborative Systems, pages 659–664, 2014.

[29] Alberto De Francesco, Claudia Di Napoli, Maurizio Giordano,
Giuseppe Ottaviano, Raffaele Perego, and Nicola Tonellotto. Mi-
das: a cloud platform for soa testing as a service. International

Journal of High Performance Computing and Networking, 8(3):285–300,
2015.

[30] S. Herbold, A. De Francesco, J. Grabowski, P. Harms, L. M. Hillah,
F. Kordon, A. Maesano, L. Maesano, C. Di Napoli, F. De Rosa,
M. A. Schneider, N. Tonellotto, M. Wendland, and P. Wuillemin.
The midas cloud platform for testing soa applications. In IEEE 8th
International Conference on Software Testing, Verification and Validation
(ICST), pages 1–8, 2015.

[31] Steffen Herbold, Patrick Harms, and Jens Grabowski. Combining
usage-based and model-based testing for service-oriented archi-
tectures in the industrial practice. International Journal on Software
Tools for Technology Transfer, 19(3):309–324, 2017.

[32] Steffen BHerbold and Andreas Hoffmann. Model-based testing
as a service. International Journal on Software Tools for Technology
Transfer, 19(3):271–279, 2017.

[33] Lom Messan Hillah, Ariele-Paolo Maesano, Fabio De Rosa, Fab-
rice Kordon, Pierre-Henri Wuillemin, Riccardo Fontanelli, Sergio
Di Bona, Davide Guerri, and Libero Maesano. Automation and
intelligent scheduling of distributed system functional testing. In-
ternational Journal on Software Tools for Technology Transfer, 19(3):281–
308, 2017.

[34] Francis Bordeleau, Jordi Cabot, Juergen Dingel, Bassem S. Rabil,
and Patrick Renaud. Towards modeling framework for devops:
Requirements derived from industry use case. In Jean-Michel
Bruel, Manuel Mazzara, and Bertrand Meyer, editors, Software En-
gineering Aspects of Continuous Development and New Paradigms of
Software Production and Deployment, pages 139–151, Cham, 2020.
Springer International Publishing.

[35] Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo
Meirelles. A survey of devops concepts and challenges. ACM Com-
put. Surv., 52(6), November 2019.

[36] Ramtin Jabbari, Nauman bin Ali, Kai Petersen, and Binish Tan-
veer. What is devops? a systematic mapping study on definitions
and practices. In Proceedings of the Scientific Workshop Proceedings of
XP2016, XP ’16 Workshops, New York, NY, USA, 2016. Association
for Computing Machinery.

[37] Gartner. Gartner says by 2016, devops will evolve from a niche
to a mainstream strategy employed by 25 percent of global 2000
organizations, 2015. https://tinyurl.com/y556a8moU, last accessed
on 28/08/20.

[38] Necco Ceresani. The periodic table of devops tools v.2 is here,
June 2016. https://blog.xebialabs.com/2016/06/14/periodic-table-
devops-tools-v-2/, last accessed on 28/08/20.

[39] Håvard Myrbakken and Ricardo Colomo-Palacios. DevSecOps:
a multivocal literature review. In International Conference on Soft-
ware Process Improvement and Capability Determination, volume 770,
pages 17–29. Springer, Springer Verlag, 2017.

[40] Yingnong Dang, Qingwei Lin, and Peng Huang. AIOps: Real-
world challenges and research innovations. Proceedings of the
2019 IEEE/ACM 41st International Conference on Software Engineer-
ing: ICSE-Companion, pages 4–5, 2019.

[41] Julián Alberto Garcı́a-Garcı́a, José Gonzalez Enrı́quez, and Fran-
cisco José Domı́nguez Mayo. Characterizing and evaluating the
quality of software process modeling language: Comparison of ten
representative model-based languages. Comput. Stand. Interfaces, 63:52–
66, 2019.

[42] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven
software engineering in practice. Synthesis lectures on software engi-
neering, 3(1):1–207, 2017.

[43] Linz BISE Institute, JKU. Devopsml, 2020. https://github.com/
lowcomote/devopsml/tree/1.2.2, last accessed on 28/08/20.

[44] Dewayne E. Perry and Alexander L. Wolf. Foundations for the
study of software architecture. ACM SIGSOFT Software Engineer-
ing Notes, 17(4):40–52, 1992.

[45] Klaas van den Berg, J.M. Conejero, and R Chitchyan. AOSD Ontol-
ogy 1.0: Public Ontology of Aspect-Orientation. Number AOSD-E in
AOSD-Europe-UT-01. AOSD Europe, 5 2005. AOSD-Europe-UT-
01.

[46] Miriam Schleipen and Rainer Drath. Three-view-concept for mod-
eling process or manufacturing plants with AutomationML. In
Proceedings of ETFA 2009 - 2009 IEEE Conference on Emerging Tech-
nologies and Factory Automation, pages 1–4. IEEE, 2009.

[47] E. Breton and J. Bezivin. Process-centered model engineering.
In Proceedings Fifth IEEE International Enterprise Distributed Object
Computing Conference, pages 179–182. IEEE, Sep. 2001.

[48] Marlon Dumas, Wil M Van der Aalst, and Arthur H Ter Hofst-
ede. Process-aware information systems: bridging people and software
through process technology. John Wiley & Sons, 2005.

[49] Dragan Djurić, Dragan Gašević, and Vladan Devedžić. The tao of
modeling spaces. Journal of Object Technology, 5(8):125–147, Novem-
ber 2006.

[50] João Paulo A. Almeida, Adrian Rutle, Manuel Wimmer, and
Thomas Kühne. The MULTI process challenge. In Loli Bur-
gueño, Alexander Pretschner, Sebastian Voss, Michel Chaudron,
Jörg Kienzle, Markus Völter, Sébastien Gérard, Mansooreh Zahedi,
Erwan Bousse, Arend Rensink, Fiona Polack, Gregor Engels, and
Gerti Kappel, editors, 22nd ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems Companion, MOD-
ELS Companion 2019, Munich, Germany, September 15-20, 2019, pages
164–167. IEEE, 2019.

[51] OMG. Spem, 2008. https://www.omg.org/spec/SPEM/About-
SPEM/, last accessed on 28/08/20.

32

https://www.iso.org/standard/35733.html
https://tinyurl.com/y556a8moU
https://blog.xebialabs.com/2016/06/14/periodic-table-devops-tools-v-2/
https://blog.xebialabs.com/2016/06/14/periodic-table-devops-tools-v-2/
https://github.com/lowcomote/devopsml/tree/1.2.2
https://github.com/lowcomote/devopsml/tree/1.2.2
https://www.omg.org/spec/SPEM/About-SPEM/
https://www.omg.org/spec/SPEM/About-SPEM/

[52] OMG. Semantics of a foundational subset for executable uml
models, 2018. https://www.omg.org/spec/FUML/, last accessed on
28/08/20.

[53] Benoı̂t Combemale, Ralf Lämmel, and Eric Van Wyk. Slebok:
The software language engineering body of knowledge (dagstuhl
seminar 17342). In Dagstuhl Reports, volume 7. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

[54] Loli Burgueño, Federico Ciccozzi, Michalis Famelis, Gerti Kap-
pel, Leen Lambers, Sébastien Mosser, Richard F. Paige, Alfonso
Pierantonio, Arend Rensink, Rick Salay, Gabriele Taentzer, Anto-

nio Vallecillo, and Manuel Wimmer. Contents for a Model-Based
Software Engineering Body of Knowledge. Software and Systems
Modeling, 18(6):3193–3205, 2019.

[55] Apurvanand Sahay, Arsene Indamutsa, Davide Di Ruscio, and Al-
fonso Pierantonio. Supporting the understanding and comparison
of low-code development platforms. In Proceedings of the 46th Eu-
romicro Conference on Software Engineering and Advanced Applications
(SEAA). IEEE, 2020.

[56] Dimitrios Kolovos, Louis Rose, Richard Paige, and Antonio Garcıa-
Domınguez. The epsilon book. Structure, 178:1–10, 2010.

33

https://www.omg.org/spec/FUML/

	Introduction
	Low-Code Testing
	Features of Low-code Testing
	Description of the features
	The Status of the Testing Component of Mendix LCDP

	Challenges and Opportunities
	The Role of Citizen Developer in Testing
	The Need for High-level Test Automation
	Cloud Testing

	Modeling Low-Code Testing Processes and Platforms
	DevOpsML
	Platform Specification
	Process Specification
	Integration Mechanism

	Modeling Testing Requirements, Processes, and Low-Code Platforms in DevOpsML
	Modeling Low-Code Testing Features.
	Modeling Testing Capabilities of LCDPs.
	Modeling Continuous Software Engineering Processes.
	Platform Requirements Modeling
	Platform Capabilities Analysis
	DevOps Process and DevOps Platform Weaving

	Conclusion

