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Proposal Abstract
Low-code development platforms (LCDP) are software development platforms on the Cloud, provided
through a Platform-as a-Service model, which allow users to build completely operational applications
by interacting through dynamic graphical user interfaces, visual diagrams and declarative languages.
They address the need of non-programmers to develop personalised software, and focus on their domain
expertise instead of implementation requirements.

Lowcomote will train a generation of experts that will upgrade the current trend of LCDPs to a new
paradigm, Low-code Engineering Platforms (LCEPs). LCEPs will be open, allowing to integrate hetero-
geneous engineering tools, interoperable, allowing for cross-platform engineering, scalable, supporting
very large engineering models and social networks of developers, smart, simplifying the development for
citizen developers by machine learning and recommendation techniques. This will be achieved by injecting
in LCDPs the theoretical and technical framework defined by recent research in Model Driven Engineer-
ing (MDE), augmented with Cloud Computing and Machine Learning techniques. This is possible today
thanks to recent breakthroughs in scalability of MDE performed in the EC FP7 research project MONDO,
led by Lowcomote partners.

The 48-month Lowcomote project will train the first European generation of skilled professionals in
LCEPs. The 15 future scientists will benefit from an original training and research programme merging
competencies and knowledge from 5 highly recognised academic institutions and 9 large and small indus-
tries of several domains. Co-supervision from both sectors is a promising process to facilitate agility of our
future professionals between the academic and industrial world.

Deliverable Abstract
Over the last few years, Low-Code Development Platforms (LCDPs) are evolving at high speed. For the
use of LCDPs at a larger scale, they should be able to scale well in terms of the size of model, execution
time, and memory consumption. As LCDPs are used for larger software domains, the underlying models
grow large as well, and this pushes the current generation of low-code and model management tools and
technologies to their limits.

When model management runs on pay-as-you-go cloud-based resources, inefficiency and reduced
scalability incur an additional cost. Hence, there is vested interest from vendors of cloud-based low-code
platforms for efficient and scalable model management tools.

In this deliverable, we present two preliminary approaches for efficient model loading and query
optimisation. Firstly, we present an intelligent run time partitioning approach that leverage sophisticated
static program analysis of model management programs to identify, load, process and transparently discard
relevant model partitions – instead of naively loading the entire models into memory and keeping them
loaded for the duration of the execution of the program. Secondly, an approach based on compile-time
static analysis and specific query optimizers/translators is presented to improve the performance of complex
queries over large-scale heterogeneous models.

In this way, using intelligent run-time partitioning approach, model management programs will be
able to process system models faster with a reduced memory footprint and resources will be freed that
will allow them to accommodate even larger models. The query optimization approach aims to bring
efficiency in terms of execution time in a way that developers can express model management programs in
a technology-agnostic form but still benefit from technology-specific optimisations when compared to the
naive query execution for low-code platforms.

2



Contents

1 Introduction 4

2 Static Analysis 5
2.1 Architecture . . . . . . . . . . . . . . . 5
2.2 Type Resolution . . . . . . . . . . . . . 6
2.3 Type Checking . . . . . . . . . . . . . . 7
2.4 Eugenia - Test case . . . . . . . . . . . 7
2.5 Related Work . . . . . . . . . . . . . . 8

3 Intelligent Run-time partitioning 10
3.1 Research Objectives . . . . . . . . . . . 10
3.2 Motivating Example . . . . . . . . . . 10

3.3 Proposed Approach . . . . . . . . . . . 12
3.4 Related Work . . . . . . . . . . . . . . 14

4 Query Optimisation 16
4.1 Research Objectives . . . . . . . . . . . 16
4.2 Motivating Example . . . . . . . . . . 16
4.3 Proposed Approach . . . . . . . . . . . 19

4.3.1 Query Translation . . . . . . . 19
4.4 Related Work . . . . . . . . . . . . . . 20

5 Conclusion 23

3



1 Introduction

Low-code platforms use Model-Driven Engineering (MDE) [1] processes such as domain specific languages
and code generation to develop applications. In traditional software development process models are used
for documentation and design, while in MDE, which is an established approach of software engineer-
ing [2], models play a crucial role as they are considered as first-class artifacts which drive the software
development. In MDE models are treated as first-class citizens of the development process to enhance
productivity [3, 4], maintainability, consistency, and traceability [5].

Many industrial projects attempt to represent the system with models that minimise accidental com-
plexity and use concepts which are close to the domain [5, 6]. Though there are several low-code platforms
available like OutSystems1, Mendix2, Google AppMaker3 and ZAppDev4, there are still open challenges
limiting the broader adoption of low-code platforms in the industry. One of the main challenges in model-
driven environments, including low-code platforms, is scalability [7, 8]. As software systems become
more complex, underlying system models grow proportionally in both size and complexity. To keep up,
model management languages and their execution engines need to provide increasingly more sophisticated
mechanisms for making the most efficient use of the available system resources. Efficiency is particularly
important when model-driven technologies are used in the context of low-code platforms where all model
processing happens in pay-per-use cloud resources.

In intelligent run-time partitioning of low-code system models, we present our approach [9] that
leverages sophisticated static program analysis of model management programs to identify, load, process
and transparently discard relevant model partitions – instead of naively loading the entire models into
memory and keeping them loaded for the duration of the execution of the program. In this way, model
management programs will be able to process system models faster with a reduced memory footprint, and
resources will be freed that will allow them to accommodate even larger models.

In heterogeneous models query optimisation, we propose an approach [10] which aims to bring
efficiency, when compared to the naive query execution for low-code platforms. Models can be stored
and represented in different back-end technologies in low-code systems. To query such heterogeneous
models, tailored high-level query languages are used. These languages help interact with heterogeneous
technologies but typically have a significant impact on performance.We aim to produce novel techniques
and algorithms for optimisation of queries operating on low-code system models captured using different
modelling languages and model representation formats. It will also produce an open source prototype
that will implement the identified algorithms and techniques on top of existing high-level model query
languages such as Epsilon Object Language (EOL) [11].

This report is submitted as a interim-deliverable for the Lowcomote project. The rest of this report
is organised as: Section 2 provides an overview of static analysis architecture along with test case while
Section 3 introduces an intelligent run-time partitioning approach based on compile-time static analysis
with a motivating example. Section 4 describes the research challenges related to model querying and then
briefly presents the proposed solution with an example. Section 5 concludes the report and presents the
future research directions.

1https://www.outsystems.com
2https://www.mendix.com
3https://developers.google.com/appmaker
4http://www.zappdev.com
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2 Static Analysis

The role of the static analyser is to analyse the program at compile-time. Static analysis will provide in-
advance knowledge about model management program that can be used for intelligent model partitioning
and query optimisation as shown in Figure 1.

Figure 1: Static analysis architecture

In intelligent model partitioning, by using the information which is obtained by static analyser, the
execution engines will be able to identify, load and process model partitions which contain model elements
of interest (See Section 3.3).

For query optimisation, the type-resolved abstract syntax graph from static analysis block will be used.
It will enable identifying accessed model elements and their patterns in the model management program
for the purpose of query optimisation. For handling heterogeneity, static analysis will need to access meta-
models at compile-time. It is done using ModelDeclarationStatement and discussed in detail in Section 4.3.1

2.1 Architecture

Low-code platforms make use of models to specify the structure and functionality of applications which
are then validated/transformed to executable code. Several languages and tools exist for defining such
model management programs. Epsilon [12] is a family of consistent languages that consists of task-
specific languages that are used for model management. Model management operations are some common
activities like model transformation, code generation, merging, validation, and refactoring. The architecture
of Epsilon is summarized in Figure 2 which shows that Epsilon supports most of model management tasks
including model merging (EML) [13], code generation (EGL) [14], model migration (Flock) [15], model
comparison (ECL) [16], model-to-model transformation (ETL) [17], model refactoring (EWL) [18], pattern
matching (EPL) [19] and model validation (EVL) [20].

Figure 2: Epsilon

The core language of Epsilon is EOL, which is a general programming language, provides common
facilities that are useful for developing domain-specific languages.

Static analysis of Epsilon started in [21] where the Abstract Syntax Tree (AST) of an EOL program
is computed, then resolution algorithms including variable resolution (e.g., resolving identifiers to their
definitions) and type resolution (e.g., primitive types and collection types) applied to derive an Abstract
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Syntax Graph. Thus, using the Abstract Syntax Graph, the static analyser can extract relevant information
(i.e., types and properties accessed by the program).

We contribute a static analysis facility in EOL, where various compile-time errors are produced as a
by-product. In first step, a type resolver will set the resolved type of expressions then in order to check type
compatibility, type of context, parameter and return types for both user-defined and built-in operation is
checked by a type checker. This compile-time static analysis of Epsilon is implemented in EOL, as it is the
core language of Epsilon.

The reason why Epsilon has been chosen as the basis of this work is that the developed query opti-
misation and run-time partitioning facilities can benefit a wide range of model management activities(e.g.
model validation, code generation, etc.). In addition, it supports a number of model persistence formats
and even it can be extended to work with unsupported technologies using Epsilon Model Connectivity
(EMC) layer [12]. Beyond Epsilon, several model management tools have static analysis facilities e.g.
AnATLyzer [22], Henshin [23].

2.2 Type Resolution

To enable static analysis of Epsilon programs, it was necessary to introduce a number of pseudo-types to the
language. Pseudo-types are added inspired from Object Constraint Language (OCL) [24] for the purpose of
static analysis. They are called pseudo-types as they cannot be instantiated. They are just used to determine
type of “self” in operation signatures. Exact type of these will be determined at the end of compile-time static
analysis. Pseudo types (EolSelf, EolSelfCollectionType, EolSelfExpressionType, EolContentType) were added in
EOL to help in static analysis. Usage of these types are shown in Table 1.

Type Name Description

EolSelf Type of context

EolSelfCollectionType Collection type of context

EolSelfExpressionType Resolved type of expression parameter

EolSelfContentType Content type of collection

Table 1: Pseudo Types

EolSelf is a pseudo type used in signature (as shown below) of operation to propagate the context type
as return type whenever println is called. For example, if we call “abc”.println() return type would then be
EolPrimitiveType.String.

1 operation Any println() : EolSelf {
2 return self;
3 }

EolSelfCollectionType is a pseudo type specially for EolCollectionTypes. It is used in operations signature
as follows:

1 operation Collection<Any> test():EolSelfCollectionType{
2 return self;
3 }

Whenever this operation is called with any collection type (Collection, Sequence, Bag, OrderedSet, Set) as
context type the return type would be the same type of collection. For example, if this operation is called
on Sequence〈String〉, return type would also be Sequence〈String〉.

EolSelfContentType is also a pseudotype just for EolCollectionTypes. Its is used in operation signature as
follows:

1 operation Collection<Any> test():EolSelfContentType {
2 }

Whenever this operation is called with any collection type (Collection,Sequence, Bag, OrderedSet, Set) as
context type the return type would be the type of content type of the collection. For example, if this operation
is called on Sequence〈String〉, return type would also be EolPrimitiveType.String. For Bag〈Integer〉as context
type, return type would be an integer EolSelfExpressionType is also a pseudotype just for EolCollectionTypes.
It is used in operation signature as follows:

1 operation Collection<Any> collect(a: Any) : Collection<EolSelfExpressionType>{
2 }

Whenever this operation is called with any collection type (Collection,Sequence, Bag, OrderedSet, Set) as
context type the return type would be the type of content type of the iterator expression. For example, if
this operation is called as following, the return type would also be EolPrimitiveType.Boolean.

1 var b: Sequence = Sequence {1,2,3};
2 var c = b.collect(f|f<3);
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Figure 3: Flowchart metamodel

2.3 Type Checking

Some other static analysis features are as follows: Consider the metamodel shown in Figure 3. In Figure 4
operation Action printName() specifies return type as String but it doesn’t have any return statement. So,
a compile-time error is produced saying missing ReturnStatement. For second operation Node printName()
specifies String as return type but in the return statement, it returns an integer value.

In Figure 4, an operation greetUser() is called on Integer as context. An error is produced because the
definition of operation the required context type to be String.

Figure 4: Type compatibility errors - Example

A simple example is presented in Figure 4, greetUser() operation requires a String context type, but the
provided type is Any which is the parent type of String. So, a warning is produced saying greetUser() may
not be invoked on Any, as it requires String.

2.4 Eugenia - Test case

These features of the static analyser are evaluated on Eugenia [25], Eugenia is a well-known tool build
using Epsilon platform to generate GMF files from an annotated ecore file. Eugenia consists of a large EOL
transformations, having 1212 lines of code, which transforms annotated metamodels to 4 different models
required by the GMF framework in order to generate a graphical editor.

Eugenia automatically generates .gmfgraph, .gmfmap and .gmftool required by GMF from a single an-
notated Ecore5 metamodel. In Eugenia, there are some warnings where parent type of required type is
provided. A screenshot of static analysis on Ecore2GMF.eol (a transformation from Eugenia) is shown in
Figure 5 and Figure 6.

5https://wiki.eclipse.org/Ecore
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Figure 5: Static analysis on Ecore2GMF.eol

2.5 Related Work

AnATLyzer [22] is a tool for static analysis of ATL model transformations. Basically, it is an IDE that
provides type checking, quick fixes and problem explanations. AnATLyzer focuses on three main points:
1) It checks that the source meta model, is correctly typed with respect to the transformation. 2) It ensures
that the model generated through transformation conforms to the target meta model. 3) It identifies any
conflicting or missing rules. This static analyser is limited to ATL model transformations only.

In [23], Born et al. extended Henshin, a rule-based model transformation language adapting graph
transformation concepts and being based on the Eclipse Modeling Framework (EMF). This extension
computes all potential conflicts and dependencies of a set of rules and reports them in form of critical pairs.
Each critical pair consists of the respective pair of rules, the kind of potential conflict or dependency found,
and a minimal instance model illustrating the conflict or dependency.

Another tool in [26], provides a static analysis facility for graph transformations. This work is based on
Constraint Satisfaction Programming (CSP). It also presents a type checker for Viatra2 framework. As this
type checker is based on CSP, it is not possible to find all the errors in a single run using static analysis.

The static analysis of OCL is presented in [27], a pseudo-type OCLSelf, is introduced to infer the type
of context for few operations such as:
• OclAny::oclAsSet() – returns Set〈Self〉
• OclAny::oclType() : Class〈OclSelf〉

Willink [28] introduced safe navigation operators in OCL. This operator solves the problem of declaring
non-null objects and null-free collections. It enables OCL navigation to be fully checked for null safety.
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Figure 6: Static analysis on EcoreUtil.eol
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3 Intelligent Run-time partitioning

Over the last two decades, several dedicated languages have been proposed to support model management
activities such as model validation, transformation, and code generation. As software systems become more
complex, underlying system models grow proportionally in both size and complexity which reveals the
limitations of the current generation of tools and technologies in terms of capacity and efficiency [29]. To
keep up, model management languages and their execution engines need to provide increasingly more
sophisticated mechanisms for making the most efficient use of the available system resources.

A reason for these limitations is related to the need of most model management tools to load the
entire model into memory. In most contemporary tools, in order to access any element of the model, the
entire model must be loaded into memory, which can be wasteful in terms of loading time and memory
consumption. Besides, keeping all model elements loaded when they are no longer needed (e.g. in
multi-step workflows) affects the memory footprint.

Consequently, partial model loading facilities can be useful for reducing the loading time and memory
footprint of large models. In partial loading, models are divided into some partitions where every partition
contains model elements that are associated with the set of executed model management operations.

In this section, we present our approach that leverages sophisticated static program analysis of model
management programs to identify, load, process and transparently discard relevant model partitions –
instead of naively loading the entire models into memory and keeping them loaded for the duration of the
execution of the program. In this way, model management programs will be able to process system models
faster with a reduced memory footprint, and resources will be freed that will allow them to accommodate
even larger models.

3.1 Research Objectives

Objectives: Compared to general-purpose programming languages, dedicated languages such as OCL,
ATL and ETL provide a more concise/tailored syntax and additional opportunities for analysis and optimisa-
tion. As low-code software systems become more complex, underlying system models grow proportionally
in both size and complexity. Existing model management program execution engines evidently struggle
with very large models [29]. The aim of this project is to design and implement next-generation execution
engines for model management languages, which will leverage sophisticated static program analysis to
identify, load, process and transparently discard relevant model partitions [30]– instead of naively loading
the entire models into memory and keeping them loaded for the duration of the execution of the program.

Expected results: This project will enable model management languages and engines to reduce the
overhead of loading unimportant parts of models (i.e. parts that they will never access) and of unnecessarily
keeping obsolete parts (i.e. parts that have already been processed and are guaranteed not to be accessed
again) in memory. In this way, model management programs will be able to process low-code system
models faster and with a reduced memory footprint, and resources will be freed that will allow them to
accommodate even larger models. For example, a model compiler that only exercises 20% of a model, will
have the capacity to process models that are 5 times as big with the same memory footprint.

The goal of this research is to propose methods for reducing the time of loading and memory footprint
when model management tasks are applied on large size models. This overall goal will be divided into the
following specific purposes:

1. Provide a static analysis facility for getting in-advance knowledge of the parts of the any type of
model, which are likely to be exercised by the model management program.

2. Propose an approach for loading only necessary parts of the model into memory
3. Design an algorithm for partitioning models in an efficient way for loading and unloading necessary

parts of models on demand
4. Propose a strategy for collecting model elements from memory which are no longer referenced by the

program

3.2 Motivating Example

Consider the domain-specific modelling language for implementing low-code form-based applications
(from Figure 7). According to this modelling language, every Application consists of a number of Entity
and Form elements. A Form has a reference to an Entity. Each Entity can be composed of Properties where
every Field is assigned to at most one Property. For implementing the low-code form-based application,
Entity and Property elements are used for generating the database schema, back-end CRUD code and web
services. Furthermore, from Form and Field elements we can generate the front-end of the application (e.g.
HTML/iOS/Android front-end code).

Let us consider the back-end code generation scenario where a developer wishes to re-generate the
back-end of an application (or of all applications hosted in the low-code platform) and leave the front-end
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Figure 7: Form-based low-code application metamodel

intact. Assume this re-generation task involves an optimisation in the generated back-end code or the
migration to a different database or web-services framework.

The back-end generator could be written in a model-to-text transformation (M2T) language such as the
Epsilon Generation Language (EGL) as shown in Listing 1. There is an Entity2Class rule which transforms
every Entity to a Java class using the EGL code. EGL is a member of the Epsilon family language which is
used for generating code from a model.

Listing 1: EGL transformation rule for generating part of the low-code application back-end
1 rule Entity2Class
2 transform e : Entity {
3 template : ’entity2class.egl’
4 target : "src-gen/" + e.name + ".java"}

In Listing 1, for every Entity (e is an instance of Entity) in the model, the program invokes the en-
tity2class.egl template and stores the generated class in a .java file. The entity2class.egl template is shown
in Listing 2. In order to generate a class from Entity, the name of class is assigned according to the name
of Entity and from every Property, a new field of the class is declared. The entity2class.egl only accesses the
name of the Entity and the names and types of its properties but not the Form or Field elements of the model.

Listing 2: The entity2class.egl template
1 public class [%=Entity.name%]{
2 [% for (p in Entity.properties){ %]
3 [%=p.type%] [%=p.name%] = new [%=p.type%]();
4 [%}%]
5 }

To load a model for executing this program, there are two possibilities.

• If the models are file-based (e.g. XMI or XML-based), the EGL execution engine needs to decide in
advance, which parts of them it will load in memory, as re-parsing the same model file several times
can be expensive. In the absence of in-advance static analysis of the generator (M2T), the UI-related
parts of the application model would be loaded as well, despite the fact that they will not be used by
the back-end generator.

• If the models are not file-based (e.g., stored in a database-backed repository such as CDO or Hawk [31]),
the EGL execution engine can retrieve model elements on demand. Still, in the absence of static
analysis, there is no way to tell which features of these model elements should be retrieved from
the repository for each element. In this situation, there are two alternatives: either greedily fetch all
features in advance or lazily fetch all features on demand. The former strategy favours execution time
over memory consumption, while the second strategy requires less memory, but potentially multiple
round-trips to the repository (detrimental to performance). Considering Listing 2 that entity2class.egl
uses the name of the Entity and the names and types of its properties but not their documentation, the
two strategies are sub-optimal:

- Greedy: The documentation of the entity and its properties is fetched from the repository but is
never used by the generator, thus wasting memory.

- Lazy: Multiple round-trips to the repository are required to fetch the values of the name/type
features of each accessed entity and property in the model, thus degrading performance.

A static-analysis-based execution planner could determine which features are (not) accessed by the
generator in advance and query the repository accordingly (e.g., populate the name and type of each
Field in one go, but leave out the documentation which is not required).
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As the entity2class.egl (Listing 2) only accesses features and properties of the Entity itself (i.e., it doesn’t
reach out to other Entity elements), after the execution of rule Entity2Class for a given entity, that entity is
no longer needed and could be offloaded from memory to reduce the overall footprint of the generator. In
the absence of in-advance static analysis, this cannot be determined by the generator. Therefore, all Entity
elements will be kept in memory until the entire generation has concluded.

3.3 Proposed Approach

This section introduces an approach which helps execution engines of model management programs to
handle large models more efficiently. The general goal of this approach is reducing loading time and
memory footprint, which is achieved by using static analysis for generating an execution plan. The
proposed approach includes three main steps illustrated in Figure 8.

Reduce Memory Footprint, Reduce Loading Time

Execution Engine

Model

Conforms 
to

Memory

Loading important parts of model from memory 
and keep necessary parts of model

Static 
Analyser

Effective Meta-model
Model Management

Program

1

2

3

Output

Figure 8: The proposed approach

(1) Static Analyser
In the first step of our approach, a model management program is provided as input to a static analyser.

The role of the static analyser is to analyse model management program using the Abstract Syntax
Tree at compile-time. While analysing, the type resolution applied to derive an Abstract Syntax Graph.
Thus, using the Abstract Syntax Graph, the static analyser can extract relevant information (i.e., types and
properties accessed by the program). Type inference is a prerequisite activity which helps the static analyser
to extract useful information for execution planning. The execution plan contains the information which
helps the execution engine to load and process models efficiently (e.g., what part of the model should be
loaded each time, which parts should be disposed of from memory, when each of these activities should
occur).

A part of the execution plan is in the form of an effective metamodel which is considered as an output
of the static analyser. The effective metamodel is a subset of the model’s metamodel which consists of only
types and properties of interest [21] (see below).

To illustrate how every step of the approach works, we use the motivating example of Section 3.2.
Considering Listing 2, the model management program entity2class.egl only uses the name of the Entity and
the names and types of its properties; the remaining information in the model is not required for executing
this program (such as their documentation). In the motivating example, the static analyser detects the
elements of the model that are necessary for executing the EGL program. Since EOL is the core language
of the Epsilon platform, our approach applies to all model management languages of the platform. Also,
the underlying principles, subject to suitable technical modifications, can be applied to the other modelling
languages, e.g., ATL.

Hence, instead of loading all model elements, we need to load only instances of Entity and Property and
only the values of their name/type fields. This information is obtained by static analysis facilities of the EGL
program.

It is worth noting that using static analysis is not only about extracting information to load model
elements on demand. Using static analysis is useful to define the disposing strategy as well. By using
the execution plan, the execution engine can detect which parts of the model are needed and how long
this information should be kept in memory. In this way, the execution engine has a plan for executing
the program to keep the parts of the model until the program needs them for execution. After that, if the
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program does not need elements anymore, the execution engine could unload them from memory (see
memory management part).
(2) Effective Metamodel

The output of static analyser is in the form of an effective metamodel for each model involved in the
program. The concept of effective metamodel was introduced in [32] in order to support partial loading of
XMI files. As for partial loading, we need only the parts of the model which are accessed by the program.
In our approach, we load each model according to its effective metamodel instead of the original one.

The structure of effective metamodel is presented in Figure 9. It consists of two classes: EffectiveMetamodel
class with name and nsuri attributes and EffectiveType with name, attributes and references. The EffectiveMeta-
model class connects to an EffectiveType by allOfKind, allOfType and types references. Figure 10 illustrates the
effective metamodel of the EGL program from our motivating example. In comparison with the original
metamodel, the effective metamodel does not include any additional information such as Field and Form
classes and their properties. Thus, loading the model according to the effective metamodel is expected to
be more efficient. The attributes of EffectiveMetamodel class are filled by the original metamodel, which
are the name and namespace URI (i.e., unique ID in terms of EMF terminology) of the metamodel. Two
effective types refer to classes which are necessary for executing the EGL program; Entity and Property in
this case. The attributes of classes are according to the attributes which need to be accessed in the code (e.g.,
name). Thus, in this step, the static analyser helps the execution engine in extracting elements of the model
which are necessary for executing the program at compile time in the form of an effective metamodel.

EffectiveMetamodel

name: String
nsURI: String

EffectiveType

allOfKind

allOfType

0…*

0…*

types
0…*

name: String
attributes: String[]
references: String[]

Figure 9: The structure of effective metamodel [32]

EffectiveMetamodel

EffectiveType

name : lowcode
nsURI : http://lowcode

name : Entity
attributes :{name}
references : {properties}

EffectiveType
name : Property
attributes :{name, type}
references : {}

allOfKind

types

0…*

0…*

Figure 10: Effective metamodel of EGL code

(3)Memory management
In the next step, the effective metamodel and the model that conforms to it are sent to the execution engine
as inputs. Loading only relevant parts of a model into memory is an efficient way to reduce the time of
loading but the way that the engine plans to load these parts of model is important.

Considering the motivating example (Listing 1), for applying the Entity2Class rule on every Entity, one
way to partition the model is by Entity. Based on this partitioning plan, the execution engine could load
every Entity, process it and dispose it every time the program finishes using that Entity. The engine could
load each Entity in every network connection (when model is stored in repository) which is efficient in
memory but an unsuitable way in terms of performance. On the other hand, the execution engine can load
all Entity elements in one connection to the network. Loading all Entity elements of the model in memory
is not efficient as all elements will be kept in memory during the program execution, incurring additional
memory consumption. Thus, the execution engine should consider a trade-off between performance
and memory consumption for loading model partitions. Consequently, there is a need for intelligent
partitioning of models underpinned by sophisticated strategies that use information extracted from code
(model management programs) at compile time.

In addition to loading the necessary partitions of the model, another concern is memory consumption.
When loaded model elements are no longer needed by the model management program, a sophisticated
strategy is required for disposing them from memory. In Listing 1, if the execution engine executes the
program for all entities, after the Java class of an entity is generated, there is no need to keep that entity
in memory any more. Hence, the memory consumed by that entity can be freed or become available for
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loading more elements.
The last phase of this approach is producing an output after executing the program. As there are different

types of model management programs, the output would be a model (executing a model transformation
program) or code (executing a code generation program). Using this approach, we expect that the program
output will be produced more efficiently with reduced loading time because of using intelligent loading
strategies and with less memory consumption due to unloading unnecessary model parts.

3.4 Related Work

Providing infrastructure for storing and indexing large models is an essential aspect of scalable MDE.
Scalable Model Persistence researches are divided into two subcategories [33]: Efficient Model Storage and
Model Indexing.

In the case of efficient model storage, the common format which is currently used for storing models is
XML Metadata Interchange. While XMI is a suitable way of storing small models, it has some limitations
when it deals with large models.

A limitation we are facing in XMI format is the lack of support for partial loading. It means that in
order to access any element of model, the whole of model file should be parsed and loaded to memory first.
Many state-of-art modelling tools such as EMF have this issue, which is not efficient in terms of time and
memory consumption.

Another issue is about XMI file size. As XMI is a verbose XML-based format, the XMI model files are
larger than needed for storing the information they do. To address these limitations, Jouault et al. [34]
introduced an open binary format known as Binary Model Syntax (BMS), and they claimed that initial
experiments show that BMS files are three times smaller than corresponding XMI files. Also, due to lazy
loading support and persistence indexing, BMS format is more efficient to access model elements, and it
can be a high-performance alternative to XMI. However, while BMS was introduced in 2009, there has not
been any update or release of this format in the public domain until now.

There are works related to model indexing. Some of the related works in this field are related to
repositories. Repository is considered as a persistence solution that is remotely accessible by tools and
users. Model bus [35] is a basic model repository based on EMF that allows modelling services to be
connected. While the back-end provides useful features, it only offers limited scalability (in terms of model
size) as it does not support partial access to models.

The Connected Data Object (CDO) [36] is another model repository for EMF models and metamodels.
It is also a framework built on top of the EMF, which provides the persistence of large models. Figure 11
provides an overview of CDO architecture.

Figure 11: CDO Architecture [36]

As shown in Figure 11, CDO supports persistence, which means users can store their models in all kind
of major databases back-ends like ODB, NoSQL and RDB and transforms models in all of the supported
back-end types quickly.

Another property of CDO is scalability, which is achieved by loading object on-demand strategies and
caching them in the application. Hence, it does not keep the objects which are no longer referenced by the
application, and they are collected from the memory automatically.

However, one concern with CDO is that it implements its own version control management system,
and regarding industry adoption, using a separate version control system for models only is not practical.
Moreover, although CDO claims to be able to load models up to 4GB, experimental evaluation with Intel
CoreI5 760 PC at 2.80GHz with 8GB of physical RAM in [37] reported an upper bound of 271MB.

Morsa [37] is a persistence solution for storing and accessing large models based on on-demand strate-
gies, which is supported by the NoSQL database. Figure 12 illustrates an overview of Morsa architecture.

Morsa driver allows client applications to access models through the modeling framework persistence
interface. Further, Morsa provides clients with a partial load of large models using a load on demand
mechanism, which has been designed to achieve scalability. This mechanism reduces database queries,
and it is aimed at managing memory usage based on an object cache that holds loaded model objects.
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Figure 12: Morsa Architecture [37]

Cache policy is configured to manage the object cache that decides which object must be unloaded when
the cache is overloaded. Four cache policies are supported by Morsa such as First In-First Out (FIFO), Last
In-First Out (LIFO), Less Recently Used (LRU), and Largest Partition First (LPF). The choice of cache policy
is currently made by the end-user.

Morsa satisfies scalability requirements, but it is just a prototype, and there is no update that they plan to
consider crucial issues like security in order to deploy this prototype in an industrial context.Also, choosing
the cache policy is manual, and the user should select the policy using a GUI [37].

Neo4EMF [38] is a persistence layer for EMF models. It is built on top of Neo4j that is a graph-based
database, as these databases are able to manage large-scale data on highly distributed environments.
Moreover, Barmpis and Kolovos [39] suggest that NoSQL databases would provide better scalability and
performance than relational databases due to the interconnected nature of models. Neo4EMF is similar to
Morsa in several aspects (notably in on-demand loading), but it aims at exploiting the optimized navigation
performance offered by graph-databases. While Neo4EMF is a more performant alternative to XMI due
to high-performance access and on-demand loading, its raw performance do not surpass a more mature
solution like CDO.

SmartSAX is another prototype which was introduced in [32]. It supports partial loading of XMI
model files. That is, instead of loading the entire file when we need even an element of the model, it
makes it possible to load the elements of model based on need. The main idea is providing in-advance
knowledge of program (which kind of model elements and which of their properties are accessed by the
model management program) can be used to partially load only a subset of XMI-based EMF model into
memory. While in full XMI loading, the time consumption and memory footprint are practically negligible
for loading of small XMI models but for large models in the industrial context, it would be problematic.

SmartSAX also has some limitations. First, it just supports read-only XMI files (does not support
changes made to partially loaded model). Also, as partial loading can affect the internal structure of the
XMI model, elements should have IDs that do not depend on their position in the containment hierarchy.
Finally, SmartSAX currently does not support loading models that are persisted in multiple XMI files.

In [40], Daniel et al. propose PrefetchML, a domain-specific language that describes prefetching and
caching rules over models. PrefetchML is a suitable solution to improve query execution time on top of
scalable model persistence frameworks. While the rules to describe the event conditions to activate the
prefetch, the objects to prefetch, and the customisation of the cache policy are defined by designers in
PrefetchML, the automatic generation of PrefetchML scripts based on static analysis of available queries
and transformations for the meta-model would be more efficient in term of optimization.

Although recent research has made advancements in this area, existing solutions have clear shortcom-
ings in accessing and processing large models. The first shortcoming is about loading models. Repositories
such as Morsa, CDO provide remote access of large models and store them in a graph-based or relational
database. Still, as some tools are based on EMF, and the common format for storing models is XMI, there
is a need for partial access to XMI models, which loads models using on-demand strategies. In addition,
loading and storing models by elements is not an efficient way, so the second challenge is about partitioning
models. Intelligent strategies for grouping model elements as a partition are needed. Finally, intelligent
unloading strategies are needed. Keeping part of models loaded into memory that will not be used fur-
ther increases the memory footprint unnecessarily. Hence, unloading them when the program does not
refer to them anymore would be a solution for reducing the memory consumption of model management
programs.
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4 Query Optimisation

In low-code platforms, there is a need to handle very large models (VLMs) [41] for some domains, for
example, the models of the Automotive Open System Architecture (AUTOSAR) [42], containing millions of
model elements. Other areas with elements in the order of millions include Building Information Modelling
and reverse-engineered code from complex systems [41]. While executing complex and computationally
expensive queries over such large models, there is a significant performance cost in terms of execution
time [43].

4.1 Research Objectives

Objectives: As software systems become more complex, underlying models in LCEPs grow proportionally
in both size and complexity. Such models can be persisted in a variety of proprietary or standard formats
(such as XMI), and in different types of back-ends (e.g. file systems, relational databases, document
databases). High-level, concise and tailored model query languages such as OCL and EOL can be used to
shield query developers from the intricacies of the underlying model formats/back-ends but this typically
has a significant impact on performance. Recently, we have shown how sophisticated runtime query
optimisation can be used to drastically improve the execution time of high-level OCL-style queries executed
over models stored in relational [44] and non-relational [45] databases. The objectives of this project
are to: (1) investigate the applicability of runtime query optimisation techniques to a wide range of
model persistence formats and back-ends, (2) identify reusable optimisation primitives and patterns across
different formats and back-ends, and (3) evaluate the obtained benefits in terms of performance and memory
footprint.

Expected results: This project will produce novel techniques and algorithms for optimisation of queries
operating on low-code system models captured using different modelling languages and model represen-
tation formats. It will also produce an open-source prototype that will implement the identified algorithms
and techniques on top of existing model query languages. While the precise performance benefits will
depend on the nature of individual queries and the underlying model representation formats, based on our
preliminary results in [44] we expect an increase of at least one order of magnitude in query execution time
for certain classes of queries (e.g. filtering all instances of a type). The Breakdown of the overall research
objective is as follows:

RO-1: Identify the performance challenges involved in executing complex queries over large models
represented in heterogeneous formats (such as XMI etc.) and stored in different back-ends (Simulink and
relational databases etc.)

RO-2: Identify reusable optimisation primitives and patterns across different formats and back-ends using
static analysis of high-level language code.

RO-3: Investigate the applicability of compile-time query optimisation techniques to a wide range of
model persistence formats and back-ends.

RO-4: Propose algorithms for optimisation of queries operating on low-code system models captured
using different modelling languages and model representation formats.

RO-5: Evaluate the results of proposed algorithms in terms of execution time and memory footprint
over various back-end technologies.

4.2 Motivating Example

In a low-code platform, often, there can be a need to access heterogeneous models concurrently. Consider
a Simulink and UML activity diagram metamodel, as an example as shown in Figures 13 and 14. There
are certain requirements and risks for subsystems that are stored in a relational database, an excerpt of the
requirements table is shown in Figure 15.

Considering both metamodels and the table structure in the figure, some constraints can be written in
the Epsilon Validation Language (EVL) [20] as shown in Listing 3. EVL is the validation language of the
Epsilon platform, built on-top of the OCL-based Epsilon Object Language (EOL), which is used to evaluate
constraints on the models. In Listing 3, we have a constraint named SubsystemCounterpart (Line 1-6) that
checks that for every Activity in UML model there exists a corresponding Subsystem in the Simulink model
with the same name and vice-versa (Line 7-10). The constraint ValidSubsystem checks that the requirements
refer to valid subsystem names (Line 16-21) and the constraint HasRequirements checks that there is at least
one requirement for every subsystem (Line 11-15).

Now, if we consider evaluating this constraint over a pair of large UML/Simulink models, it would
become computationally expensive and slow to execute, as each UML activity will be checked against a
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Figure 14: Excerpt of Simulink Metamodel

large number of subsystems within the Simulink model. Writing in a high-level language such as EVL
makes it easy to write constraints over heterogeneous modeling technologies using a uniform syntax, but
on the other hand, it can also increase computational complexity and memory footprint. The complexity of
evaluating these constraints via naive iteration for a Simulink model with N subsystems and a UML model
with M activities would be O(N*M) for each constraint.

Listing 3: EVL constraint before optimisation
1 context UML!Activity {
2 constraint SubsystemCounterpart {
3 check: Simulink!‘simulink/Ports & Subsystems/Subsystem‘.allInstances
4 .exists(s|s.name = self.name)
5 }
6 }
7 context ‘simulink/Ports & Subsystems/Subsystem‘ {
8 constraint ActivityCounterPart {
9 check: UML!Activity.allInstances.exists(a|a.name = self.name)

10 }
11 constraint HasRequirements {
12 check: Requirements!Requirement.allInstances.exists(r|r.subsystem = self.name)
13 }
14 }
15 context Requirements!Requirement {
16 constraint ValidSubsystem {
17 check : Simulink!‘simulink/Ports & Subsystems/Subsystem‘.allInstances
18 .exists(s|s.name = self.subsystem)
19 }
20 }

One possible optimization here is to translate these into their native query languages, which are often
more efficient to execute in. In this case, Simulink has a built-in index-backed findBlocks method for looking
up elements by type and properties. Here, to speed up this query, a native query that makes use of the
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findBlocks method as shown in EVL Listing 4. This constraint is semantically equivalent to the one shown in
Listing 3 but is much faster to execute. Assuming a complexity of O(1) for a hash-based index in Simulink,
this would reduce the overall complexity of the constraint to O(M).

To reduce the complexity of the 2nd constraint, we could extend Epsilon’s EMF driver with two new
methods. A new index method would create a property-based index of type instances in the UML model
(i.e. a name-based index of activities in line 2), which could be then used in a find method to retrieve
instances of that type by property value (i.e. activities by name in line 12), without having to naively
iterate through them. With a complexity of O(M) for creating the index in line 2 and a complexity of O(1)
for querying it in line 12, the complexity of the 2nd constraint would drop to O(M) + O(N). For the third
constraint HasRequirements, the query can be translated to the native query language of relational databases
(SQL) as shown in the Listing 4, to improve performance. Native queries rewritten in SQL will be much
faster to execute for retrieving data stored in relational databases.

Listing 4: EVL constraint after optimisation
1 pre {
2 UML.index(’Activity’, ’name’);
3 }
4 context UML!Activity {
5 constraint SubsystemCounterpart {
6 check : Simulink.findBlocks(’simulink/Ports & Subsystems/Subsystem’,’name’, self.name)
7 .notEmpty()
8 }
9 }

10 context ‘simulink/Ports & Subsystems/Subsystem‘ {
11 constraint ActivityCounterPart {
12 check: UML.find(’Activity’, ’name’, s.name).isDefined()
13 }
14

15 constraint HasRequirements {
16 check: Requirements.runSql("select * Requirement where subsystem = ’+ self.name + ’")
17 .size() > 0
18 }
19 }
20 context Requirements!Requirement {
21 constraint ValidSubsystem {
22 check : Simulink.findBlocks(’simulink/Ports & Subsystems/Subsystem’,’name’,self.subsystem)
23 .notEmpty()
24 }
25 }

There are two notable downsides to manually rewriting the constraints to make explicit use of driver
technology-specific issues (i.e. Simulink’s findBlocks method and the EMF driver’s find and index methods).

• This kind of optimisation requires expert knowledge of the capabilities of the different modelling
tools and drivers.

• Model management programs that make use of these optimisation mechanisms are more verbose and
hence difficult to understand and maintain.

• Model management programs become tightly-coupled with the underlying technologies. This would
hinder migration to a different modelling technology in the future (e.g. to a non-EMF based UML
tool)

The main aim of this work is to investigate how such optimisations can be performed behind the scenes,
using static analysis and automated program rewriting so that developers can express model manage-
ment programs in a technology-agnostic form (as in Listing 3) but still benefit from technology-specific
optimisations.
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Figure 16: Proposed methodology
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Figure 17: Query Optimisation Architecture

4.3 Proposed Approach

In this section, we present a framework for query optimisation over heterogeneous models in a low-code
platform [10]. The aim of this framework is to be able to automatically rewrite expensive queries to make
them more efficient in terms of execution time. Query rewriting/translation is based on compile time static
analysis. To our knowledge, we have not found the solution to this problem in literature.

An overview of the proposed approach is shown in Figure 16. In a low-code platform, the underlying
metamodels can be of different modelling technologies, as depicted in our running example. Furthermore,
model management programs, such as queries or transformations, are compiled. At compile-time, a static
analysis component will analyze both the program and the metamodels to which its input and output
models conform and will yield a type-resolved abstract syntax graph. Static analysis after type resolution
can also produce the necessary compile-time errors based on type compatibility as a by-product. The query
optimisation block will use the results of such static analysis.

4.3.1 Query Translation

For the whole process of query optimization, let us consider the running example, as shown in Listing 5.
For static analysis, a metamodel is extracted from database schema with the following rules:

• Each Database D is mapped to a respective metamodel MM.
• Each Table T in Database D would be mapped to a meta-class of that metamodel MM.
• Each Column C in a table T is mapped to a structural feature or attribute of meta-class Class of that

metamodel MM.
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To access models at compile-time for the purpose of static analysis, we use ModelDeclarationStatement.
The syntax of the model declaration system is shown in Listing 5. Model declaration statement specifies
model’s local name, model’s type (in this case MySQL), as well as a set of model-type- specific key-value
parameters (in this case server, port, database, username, password, name) that is used to fetch the model’s
metamodel. This model declaration statement for static analysis is technology-agnostic i.e. we can specify
different modelling technologies.

The query optimisation block will have specific optimizers for each back-end technology such as MySQL
or Simulink as shown in Figure 17. The architecture supports several orthogonal optimizers as all optimisers
operate on the same AST, so it is possible that they may interfere with each other. If there is just one optimiser
then it would have to know about all the other models accessed by the program in question.

Listing 5: Syntax of Model Declaration Statement
1 model Requirements driver MySQL {
2 server = "localhost",
3 port = "3306",
4 database = "requirements",
5 username = "root",
6 password = "",
7 name= "Requirements"
8 };
9 Requirements!Requirement.allInstances.exists(f|f.subsystem = self.name);

Every back-end technology can provide different optimizing strategies that can be utilized for efficient
querying. For instance, if a program queries three different models conforming to different modelling
technologies concurrently, then three individual optimizers for each back-end technology would be invoked.
They will each be responsible for the optimisation of queries on their models.

These optimizers would translate queries written in high-level languages such as the Epsilon Object Lan-
guage and automatically rewrite them in the native query language of their model persistence technology.
Query translation and rewriting would be different for different model formats (such as database-backed
models, Simulink). All modeling technologies supported by the Epsilon (drivers) implement an EMC-
provided Java interface IModel. For instance, in the running example, we want to do query optimisation for
two types of models, Simulink, and database-backed models. Now, both these drivers already implement
IModel. We created a new interface for query optimisation known as IRewriter. Both these drivers will now
implement this IRewriter interface. We introduce a new method rewrite() in this interface IRewriter which
will take in an IEolModule as a parameter. In EOL, programs are organized in modules i.e. EolModule that
implement the IEolModule interface. Each EolModule defines a main body and a number of operations.

Now all model drivers that support compile-time optimisation, will implement the IRewriter interface
and its rewrite() method. One example of this approach is shown in Figure 17. At compile-time, the
rewrite method is called for all declared models to perform technology-specific query optimisations. In the
rewrite() method, the AST of each statement is passed, which is then translated/rewritten to its native query
language, and is replaced with the original AST in EOLModule.

Now, we will explain by an example how the type-resolved abstract syntax graph can be used to
translate certain types of EOL expressions to SQL. For the query translation process, we will consider the
running example in Listing 5. In particular, the EOL expression can be translated to more efficient SQL
representations:
• .allInstances is a property that retrieves all records from a table of database. In translation process

Requirements!Requirement.allInstances would be translated to select * from Requirement.
• .exists() is a FirstOrderOperationCallExpression that returns true if there is at least one instance in the

collection that satisfies the given condition.
• Requirements!Requirement.allInstances.exists(f—f.subsystem=self.name would be translated to Require-

ment.runSql(select * from Requirement where subsystem = ’+ self.name + ’”).size() 〉0
These optimised queries would be executed on collections of models. For evaluation, we will consider

execution time and memory footprint. The decrease in execution time will depend on the underlying model
persistence technology. These optimisations can be tested for chain transformations as well (Collaboration
with ESR-15).

4.4 Related Work

We can classify related model querying approaches into two main categories as shown in Figure 18.
• Native Querying
• Back-end Independent Querying.
Native querying is efficient as it is tailored for the specific back-end persistence technology: the native

language of the model back-end is used. For example, if a model is stored in a relational database, SQL
would be used as a query language. The most prominent advantage is this efficiency, as native query
languages can have index-based methods, but it also contains several drawbacks [46]:
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• Query conciseness: Native queries can be verbose and challenging to write and maintain
• Query abstraction level: Native queries are technology-specific, often requiring considerable effort to

change queries if the back-end technology is changed

Figure 18: Taxonomy of model querying approaches

Another common way is the use of high-level languages that abstract over model representations and
persistence formats. ATL (Atlas Transformation Language) [47], OCL (Object Constraint Language) [24],
EOL (Epsilon Object Language) are some examples of such high-level languages. They make use of
intermediate layers (such as the OCL pivot metamodel and the Epsilon model connectivity layer) to shield
developers from the complexity and particularities of the underlying persistence technologies. The OCL
pivot metamodel only supports EMF-based models, while EMC supports several model persistence formats
(such as relational database, spreadsheets, Simulink, and EMF-based models). Epsilon offers a driver-based
approach, so new technologies can easily be integrated by adding a driver that implements the IModel Java
interface.

Figure 19: Addition of derived attributes [31]

In [44], the authors discuss the challenges of running OCL based queries on relational database-backed
models and propose an approach for translating queries written in higher-level query languages (EOL) to
native query languages (such as SQL) at run-time. In [48, 49] authors have proposed ways to generate
SQL from OCL expressions. In the Hawk model index [31], an approach has been introduced based on
derived features. Authors suggest precomputing such features and cache them in the model index itself as
shown in Figure 19. Results have shown a decrease in execution time by using such derived attributes and
references, but it has certain shortcomings as well. Firstly, it adds an overhead of computing these derived
attributes, which increases the model insertion time containing derived attributes, as well as the overhead
of updating the values of these features when the model changes.

Another approach for query optimisation as proposed in [50] is to efficiently compute calls to allInstances()
queries. The allInstances() operation retrieves a collection containing all the members of the element (type)
the operation is invoked on. This approach is based on greedy computation instead of on-demand compu-
tation. It uses metamodel introspection and compile-time static analysis of queries to:
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• Check if the program makes multiple calls to allInstances().
• If yes, then precompute all allInstances() collections. Cache all the precomputed collections in one

pass.
In [43], the authors present how combining three optimization techniques (parallelization, lazy evalua-

tion, and short-circuiting) can significantly increase the performance of queries over large models. In [51],
a tool called Mogwai is proposed for efficient and scalable querying. Mogwai translates OCL and ATL
expressions to Gremlin scripts- a query language for NoSQL databases. This shifts the computation of
queries at the database (persistence) side, and it makes use of the benefits of optimisation strategies of the
specific back-end technology for large models. To address scalability challenges in MDE, one solution is
through the use of distributed systems. Pagan et al. [52] propose an efficient query language: MorsaQL
(Morsa Query Language) for the MORSA repository [37] – a repository for storing large models in NoSQL
databases. The design of MorsaQL is based on the SQL SELECT – FROM – WHERE schema. SELECT
describes the type of resulting element, FROM specifies search scope, and WHERE specifies the constraints
or condition. Experimentation has shown better performance as compared to OCL, EMF Query, and Plain
EMF in terms of efficiency and usability for queries over models stored in Morsa repositories. Some open
challenges that still exists in state-of-the-art model querying approaches can be summarized as:
• There is a limited static analysis functionality in high-level query languages that supports hetero-

geneous modelling technologies. Also, there is limited use of static analysis in model management
program analysis and optimisation (e.g query translation, rewriting etc.)

• For the translation of queries to the native language of the persistence technology, mapping from
high-level language to different native languages is a challenge for heterogeneous model formats
(XMI) and back-ends (Simulink, spreadsheets, databases etc.)

• Query optimisation through derived attributes increases upfront startup cost for pre-computing if
those attributes are never used, then it is wasteful to compute derived attributes and also its increasing
loading time for models.

• Pre-computing and caching (greedy caching) derived attributes or in case of computing allInstances
collection in one pass as in [50] not just upfront cost but also increases memory footprint.
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5 Conclusion

In this report, we have discussed how scalability is a challenging aspect in a low-code platform and
proposed approaches for intelligent model partitioning and query optimisation using static analysis. We
described the architecture of static analyser for EOL. We added new features to the EOL engine to get more
static information such as return type compatibility, type compatibility of context and parameters from
model management programs at compile time. As the static analyser has been implemented for EOL, we
plan to extend this facility to other specific languages of the Epsilon framework like the Epsilon Validation
Language (EVL).

First, in Section 3, we presented a novel approach that will enable model management languages and
engines to eliminate the overhead of loading unimportant parts of models (i.e. parts that they will never
access) and of unnecessarily keeping obsolete parts (i.e. parts that have already been processed and are
guaranteed not to be re-accessed) in memory.

According to the designed approach in Section 3.3, we use a static analyser for extracting the effective
metamodel, which has information about referenced model elements in code. We are currently working on
extracting the effective metamodel in order to detect relevant model elements starting from the incomplete
algorithm introduced in [32]. In the future, we plan to devise an algorithm to partition the model in order
to load every part of model in an efficient way. This algorithm would be useful in a way that enables the
engine to load models in an efficient way.

Then in Section 4, we presented how in a low-code platform, models stored in various back-end
formats, often need to be accessed concurrently in a model management program. It is essential to have
a query optimization strategy for this scenario so that large-scale models can be queried efficiently. We
have argued that compile-time static analysis and query translation can deliver benefits both in terms of
memory footprint and execution time of complex queries. Query translation is used to take benefit from
each back-end technology’s specific optimizations.

According to the proposed architecture of query optimisation in Section 4.3, we use static analyser
to extract the information from model management program. The type-resolved abstract syntax graph
is then passed through different query translators/rewriters. Currently, we are working on EOL to SQL
query translation. In future, we plan to extend query rewriting for EMF models to create indices based on
statically analysed information and make use of those indices at run-time to query models.

To evaluate the intelligent run-time partitioning approach, we will compare it to other state of the
art approaches like Neo4EMF and CDO. As the goal of this work is to propose methods for reducing
the loading time and memory footprint, they are the factors that we will compare by running model
management programs with and without the intelligent model partitioning and disposal facilities. In
order to evaluate query optimisation approach, we will preferably use programs that access and query
different models (MySQL, Simulink etc.) concurrently to see if the approach performs efficiently in case
of heterogeneous models. These model management programs (EOL, EVL) can be both self-written and
mined from public repositories on GitHub.

We will consider the models proposed in the GraBaTs 2009 contest as test cases [53] for both scalable
persistence and query. The models conform to the JavaMetamodel metamodel. There are five models, from
Set0 to Set4, each one larger than its predecessor (from a 8.8MB XMI file with around 70k model elements
representing 14 Java classes to a 646MB file with 5M model elements representing 5984 Java classes).
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Patrick Valduriez. Atl: a qvt-like transformation language. In Com-
panion to the 21st ACM SIGPLAN symposium on Object-oriented pro-
gramming systems, languages, and applications, pages 719–720, 2006.

[48] Marina Egea and Carolina Dania. Sql-pl4ocl: an automatic code
generator from ocl to sql procedural language. Software & Systems
Modeling, 18(1):769–791, 2019.

[49] Marina Egea, Carolina Dania, and Manuel Clavel. Mysql4ocl: A
stored procedure-based mysql code generator for ocl. Electronic
Communications of the EASST, 36, 2010.

[50] Ran Wei and Dimitrios S Kolovos. An efficient computation strat-
egy for allinstances (). In BigMDE@ STAF, pages 32–41, 2015.
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