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Proposal Abstract
Low-code development platforms (LCDP) are software development platforms on the Cloud, provided
through a Platform-as a-Service model, which allow users to build completely operational applications
by interacting through dynamic graphical user interfaces, visual diagrams and declarative languages.
They address the need of non-programmers to develop personalised software, and focus on their domain
expertise instead of implementation requirements.

Lowcomote will train a generation of experts that will upgrade the current trend of LCDPs to a new
paradigm, Low-code Engineering Platforms (LCEPs). LCEPs will be open, allowing to integrate hetero-
geneous engineering tools, interoperable, allowing for cross-platform engineering, scalable, supporting
very large engineering models and social networks of developers, smart, simplifying the development for
citizen developers by machine learning and recommendation techniques. This will be achieved by injecting
in LCDPs the theoretical and technical framework defined by recent research in Model Driven Engineer-
ing (MDE), augmented with Cloud Computing and Machine Learning techniques. This is possible today
thanks to recent breakthroughs in scalability of MDE performed in the EC FP7 research project MONDO,
led by Lowcomote partners.

The 48-month Lowcomote project will train the first European generation of skilled professionals in
LCEPs. The 15 future scientists will benefit from an original training and research programme merging
competencies and knowledge from 5 highly recognised academic institutions and 9 large and small indus-
tries of several domains. Co-supervision from both sectors is a promising process to facilitate agility of our
future professionals between the academic and industrial world.

Deliverable Abstract
Over the last few years, Low-Code Development Platforms (LCDPs) are evolving at high speed. For the
use of LCDPs at a larger scale, they should be able to scale well in terms of the size of model, execution
time, and memory consumption. As LCDPs are used for larger software domains, the underlying models
grow large as well, and this pushes the current generation of low-code and model management tools and
technologies to their limits.

When model management runs on pay-as-you-go cloud-based resources, inefficiency and reduced
scalability incur an additional cost. Hence, there is vested interest from vendors of cloud-based low-code
platforms for efficient and scalable model management tools.

In this deliverable, we present two approaches for efficient model loading and query optimisation.
Firstly, we present an approach for partial loading of large models that leverages sophisticated static
program analysis of model management programs to identify, load, process relevant model parts – instead
of naively loading the entire model into memory. Secondly, an approach based on compile-time static
analysis and specific query optimizers/translators is presented to improve the performance of complex
queries over large-scale heterogeneous models.

In this way, using intelligent run-time partitioning approach, model management programs will be
able to process system models faster with a reduced memory footprint and resources will be freed that
will allow them to accommodate even larger models. The query optimization approach aims to bring
efficiency in terms of execution time in a way that developers can express model management programs in
a technology-agnostic form but still benefit from technology-specific optimisations when compared to the
naive query execution for low-code platforms.
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1 Introduction

Low-code platforms use Model-Driven Engineering (MDE) [1] processes such as domain specific languages
and code generation to develop applications. In the traditional software development process, models
are used for documentation and design, while in MDE, which is an established approach of software
engineering [2], models play a crucial role as they are considered as first-class artifacts which drive the
software development. In MDE, models are treated as first-class citizens of the development process to
enhance productivity [3, 4], maintainability, consistency, and traceability [5].

Many industrial projects attempt to represent the system with models that minimise accidental com-
plexity and use concepts which are close to the domain [5, 6]. Though there are several low-code platforms
available like OutSystems1, Mendix2 and ZAppDev3, there are still open challenges limiting the broader
adoption of low-code platforms in the industry. One of the main challenges in model-driven environments,
including low-code platforms, is scalability [7, 8]. As software systems become more complex, underlying
system models grow proportionally in both size and complexity. To keep up, model management languages
and their execution engines need to provide increasingly more sophisticated mechanisms for making the
most efficient use of the available system resources. Efficiency is particularly important when model-
driven technologies are used in the context of low-code platforms where all model processing happens on
pay-per-use cloud resources.

In partial loading of large low-code system models, we present our approach [9] that leverages sophis-
ticated static program analysis of model management programs to identify, load, process relevant model
parts – instead of naively loading the entire models into memory. In this way, model management programs
will be able to process system models faster with a reduced memory footprint, and resources will be used
efficiently allowing them to accommodate even larger models.

In heterogeneous models query optimisation, we propose an approach which aims to bring efficiency,
when compared to the naive query execution for low-code platforms. Models can be stored and represented
in different back-end technologies in low-code systems. To query such heterogeneous models, tailored high-
level query languages are used. These languages help interact with heterogeneous technologies but typically
have a significant impact on performance. We proposed novel techniques and algorithms for optimisation
of queries operating on low-code system models captured using different modelling languages and model
representation formats. We proposed approaches for optimisation (1) of queries over MySQL models by
translating EOL queries to MySQL queries [10]; (2) of queries over EMF models by (a) custom indices [11],
(b) translation of EOL to Viatra [12]; (3) of model-to-model transformation by selective traceability.

This report is submitted as a final-deliverable for the Lowcomote project. The rest of this report is
organised as: Section 2 proposes a NeoEMF-based approach for loading serializable models. Section 3
introduces a partial loading approach for large file-based and repository-based models using algorithms
and presents the result of the evaluation of our approach compared to the state of the art. Section 4
describes the research challenges related to model querying and then briefly presents the proposed solution
with the corresponding evaluation results. Section 5 concludes the report and presents the future research
directions.

1https://www.outsystems.com
2https://www.mendix.com
3http://www.zappdev.com
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2 Efficient Loading of Serializable Models

Handling very large models rapidly becomes challenging due to the capacity of tools to deal properly
with a big amount of data. While several solutions to persist EMF models exist, most of them do not
allow partial model unloading and cannot handle models that exceed the available memory. Furthermore,
these solutions do not take advantage of the graph nature of the models: most of them rely on relational
databases, which are not fully adapted to store and query graphs. Neo4EMF [13] is a persistence layer
for EMF that relies on a graph database and implements an unloading mechanism. The main purpose
of NeoEMF is to face scalability issues on large-scale models [14]. On the side, additional modules allow
developer to use additional persistence solution. For instance, NeoEMF I/O deals with file solution, as
the standard XML Metadata Interchange (XMI) files. Moreover, distributed solutions whose purpose is
to access and interact efficiently with large-scale models, take advantage of clustering several machines
largely increasing the quantity of resources allocated to a computation. The multi-language engine for
executing data engineering Apache Spark, distribute objects by streaming. In this section, we propose an
extension of NeoEMF for dynamically loading objects, independently of EMF artifacts. Figure 2 gives an
overview of how we defined a side ecosystem to load models using the NeoEMF I/O module. The related
work presented in Section 3 gives an overview of other existing approach about efficient model loading.

Figure 1: The metamodel of a social network (TTC 2018).

2.1 Motivating example

Social networks grow fast. For instance, the social network Facebook from the Meta company rapidly
turned into a trillion edges graph [15]. In Figure 1 we show the simple metamodel for the social graph
that we will use in this section. The metamodel has been originally proposed at the Transformation Tool
Contest (TTC) 2018 [16], and used to express benchmarks for model query and transformation tools. In
this metamodel, two main entities belong to a SocialNetwork. First, the Posts and the Comments that
represent the Submissions, and second, the Users. Each Comment is written by a User, and is necessarily
attached to a Submission (either a Post or another Comment). Besides commenting, the Users can also like
Submissions. The first task to interrogate a such model is to load its content. The native EMF loader shows
very poor performance, and is not able to handle fast loading. For models of only 30k elements and 60k
links, the loading is approximately 20 seconds. This amount of time exponentially grows with the number
of elements and links. A second drawback of using the EMF loader is its performance strongly depends the
model complexity. Since the attributes and references may refer to other objects of the model, a resolution
is needed. The complexity of the resolving part depends on the model, and may need a deep investigation
in the full model to be solved. It is then not reasonable to use EMF for loading large-scale models, as we
can find in social network applications.

2.2 Contribution to NeoEMF

Figure 2 describes the integration of NeoEMF in modeling solutions ecosystem. Standard modeling users
using model-based applications which provide high-level modeling features such as a graphical interface,
interactive console, or query editor. These features internally rely on EMF’s Model Access API to navi-
gate models, perform CRUD operations, check constraints, etc. Modelers might also want to distribute
their computation to improve performances and increase computing capacity. Depending on the targeted
solution, the input differs on how it is interpreted by the engine. Indeed, most of Java frameworks for
distributed computing deals with objects who must implement the java.io.Serializable interface. For
instance, SparkTE [17], a model transformation engine based on Spark4, designed in the context of the Low-
comote project, deals with Java serialized elements for communicating between computational nodes. In

4https://spark.apache.org
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the other case, that is using model-based tools using EMF modeling solution, EMF delegates the operations
to a persistence manager using its Persistence API, which is in charge of the serialization/deserialization of
the model.

Advanced User 
& Developer

NeoEMF I/O

Standard 
Modeling User

NeoEMF Core 

/Graph     /Map     /Column 

Modeling Solution (Serializable) EMF 

Model-Based Tools 

Distributed Model-
Based Tools (e.g.,

SparkTE)

Model Access API

Persistence API

Backend API

.XMI Blueprints MapDB HBase/ 
ZooKeeper 

Figure 2: NeoEMF extension integration in a model-based development environment.

Once the core component has received the modeling operation to perform, it forwards the operation to
the appropriate database driver (Map, Graph , or Column), which is in charge of handling the low-level
representation of the model. These connectors translate modeling operations into Backend API calls, store
the results, and reify database records into EMFEObjectswhen needed. Our contribution aims at providing
an abstract class EventListener4Serializable in the NeoEMF I/O module, that is completely independent
of EMF core components. A NeoEMF EventListener defines the behaviour for parsing elements as they
are read during file reading. To use the features of our new listener, a user defines two behaviours: (i) one
for element, overriding createElement and (ii) for links overriding createLink. An overview of this listener
and a concrete implementation for the case presented in Section 2.1 are respectively presented in Listing 1
and Listing 2.

Listing 1: EventListener4Serializable interface.
1 abstract class EventListener4Serializable[E <: Serializable, L <: Serializable]
2 extends EventListener {
3 ...
4 def createElement(classname: String, id: Long): E
5 def createLink(referenceName: String, parentId: Long, targetIds: List[Long]): L
6 }

Labels for class names and references names are defined as constants, corresponding to the names that
are used in the metamodel. Also to allow both the distribution of elements and links, to have a Spark
distributed graph, links must be defined as a triplet of source ID, a label and a target ID. The link’s structure
is independent of elements, but must used valid IDs, existing in the rest of the model.

Our modeling solution presents elements as simple dynamic objects, composed by three fields: (i) a
class name, (ii) item ID as a long value, (iii) a map of attributes. In the other side, links are triplets of a
source ID, a link label, and a list of target IDs. Compared to EMF, there is a lost of information which
would make the serialization impossible. For instance, containment of objects or reversed reference are not
naturally serializable and are then removed in our modeling solution.
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Listing 2: An example usage of EventListener4Serializable for TTC18 case.
1 class SocialNetworkListener
2 extends EventListener4Serializable[SocialNetworkElement,SocialNetworkLink] {
3

4 override def createElement(classname: String, id: Long)
5 : SocialNetworkElement = {
6 classname match {
7 case USER => new SocialNetworkUser(id)
8 case POST => new SocialNetworkPost(id)
9 case COMMENT => new SocialNetworkComment(id)

10 case _ =>
11 }
12 }
13

14 override def createLink(referenceName: String, parentId: Long, targetIds: List[Long])
15 : SocialNetworkLink = {
16 referenceName match {
17 case COMMENT_LIKEDBY => new CommentLikedBy(parentId, targetIds)
18 case COMMENT_POST => new CommentPost(parentId, targetIds.head)
19 case COMMENT_SUBMISSION => new CommentSubmission(parentId, targetIds.head)
20 case SUBMISSION_COMMENTS => new SubmissionComments(parentId, targetIds)
21 case SUBMISSION_SUBMITTER => new SubmissionSubmitter(parentId, targetIds.head)
22 case USER_FRIENDS => new UserFriends(parentId, targetIds)
23 case USER_LIKES => new UserLikes(parentId, targetIds)
24 case USER_SUBMISSIONS => new UserSubmissions(parentId, targetIds)
25 case _ =>
26 }
27 }
28 }

2.3 Experimental results

This section presents the time it takes for loading models with different sizes and complexity. These times
are compared to times to load the same models using the native EMF resource loader. The experiments
have been conducted on a shared memory machine with a Intel Core i7-8650U having 8 cores at 1.90GHz
and a memory of 32GB. The machine was running Ubuntu 22.04 LTS. We use Java 13, Scala 2.12 with Spark
3.1.0. The used model and their respective sizes are described in Table 1. The smallest model is composed
of 1274 elements and 2163 links, while the biggest is made of 859114 elements and 1589908 links. Each
recorded timing is the average of 30 executions.

Dataset Loading time
id #elements #links #users #posts #comments #likes ext. NeoEMF native EMF
1 1274 2163 80 554 640 6 61ms 69ms
2 2071 3548 889 1064 118 24 93ms 184ms
3 4350 7594 1845 2315 190 66 146ms 450ms
4 7530 14422 2270 5056 204 129 270ms 878ms
5 15132 27886 5518 9220 394 572 413ms 3921ms
6 30396 56261 10929 18872 595 1598 491ms 19473ms
7 58076 111197 18083 39212 781 4770 1858ms 82535ms
8 115121 218823 37228 76735 1158 13374 2699ms 389953ms
9 224816 424901 1678 74668 148470 36815 3700ms 1711354ms
10 443323 812515 2606 167299 273418 102276 8863ms > 5 minutes
11 859114 1589908 3699 314510 540905 2684 19201ms > 15 minutes

Table 1: Loading time of models from TTC18.

Clearly, our solution outperforms EMF native loading mechanism. Because we only pass through the
file once, loading elements as they are read, the computation time is proportional to the size of the file.
In the contrary, EMF concretely resolves references making its loading mechanism time depending on the
topology of the input model.

7



3 Partial Loading of Models

In MDE, models are manipulated using model management programs that carry out different tasks such
as model transformation, model merging, model validation, etc. As models grow in size MDE tools face
scalability problems. One of them is the ability of execution engines of model management languages to
scale up for models of growing size in terms of execution time and memory usage [18].

The primary reason for this scalability issue lies in the way that most of contemporary technologies
interact with models. For example, when a model management program needs to load and process (e. g.
transform, validate) a model, if the model is a file-based model (e. g. XMI), then all the required information
from it needs to be read upfront, before the execution of the program. If the model is stored in a database
(e. g. Neo4j), then we can issue multiple queries to the database to fetch model elements of interest (and
their properties) progressively, as they are needed for the execution of the program.

To summarise, the interaction of model management program execution engines with large models (file-
based or repository-based) can be too “short-sighted” in the absence of static-analysis-based model loading
and caching mechanisms. This can result in increased model loading times and unnecessary memory
consumption. This section introduces an approach that can help execution engines of model management
programs handle larger models more efficiently. In our approach, by using in-advance knowledge about
the program provided by static analysis, execution engines are able to identify and load only parts of model
that are likely to be accessed by the program.

3.1 Research Objectives

Objectives: Compared to general-purpose programming languages, dedicated languages such as OCL,
ATL and ETL provide a more concise/tailored syntax and additional opportunities for analysis and optimisa-
tion. As low-code software systems become more complex, underlying system models grow proportionally
in both size and complexity. Existing model management program execution engines evidently struggle
with very large models [19]. The aim of this project is to design and implement next-generation execution
engines for model management languages, which will leverage sophisticated static program analysis to
identify, load, process and transparently discard relevant model partitions [20]– instead of naively loading
the entire models into memory and keeping them loaded for the duration of the execution of the program.

Expected results: This project will enable model management languages and engines to reduce the
overhead of loading unimportant parts of models (i.e. parts that they will never access) and of unnecessarily
keeping obsolete parts (i.e. parts that have already been processed and are guaranteed not to be accessed
again) in memory. In this way, model management programs will be able to process low-code system
models faster and with a reduced memory footprint, and resources will be freed that will allow them to
accommodate even larger models. For example, a model compiler that only exercises 20% of a model, will
have the capacity to process models that are five times bigger with the same memory footprint.

The goal of this research is to propose methods for reducing the time of loading and memory footprint
when model management tasks are applied on large size models. This overall goal will be divided into the
following specific purposes:

1. Provide a static analysis facility for getting in-advance knowledge of the parts of any type of model,
which are likely to be exercised by the model management program.

2. Propose an approach for loading only necessary parts of the model into memory.
3. Design an algorithm for partitioning models in an efficient way for loading and unloading necessary

parts of models on demand.
4. Propose a strategy for collecting model elements from memory which are no longer referenced by the

program.

3.2 Motivating Example

As a motivating example, consider a model that conforms to a contrived Project Scheduling Language
(PSL), the UML class diagram of which is shown in Figure 3. According to the PSL metamodel, each
Project has a title and a description, and it consists of Tasks and Persons. Tasks can be completed through
automated means (AutomaticTasks) or manually (ManualTasks). All Tasks have a title but only ManualTasks
have a duration, and a start time. Also, each ManualTask specifies the Effort that different Persons in the
project will contribute to it (as a percentage of their time).

Consider a model that conforms to the PSL language (see Figure 3), and on which we wish to print the
number of people who contribute to each ManualTask. This program could be written in a language such
as the Epsilon Object Language (EOL)5 [21] as shown in Listing 3.

Epsilon6 is a platform that provides task-specific languages for common model management activities
such as model transformation, code generation, merging, validation, and refactoring. The core language of

5https://www.eclipse.org/epsilon/doc/eol/
6https://www.eclipse.org/epsilon/
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AutomaticTask
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 duration: Int 

Figure 3: PSL Metamodel.

the platform is the Epsilon Object Language (EOL), which is a model-oriented programming language that
provides common facilities for developing task-specific model management languages.

Listing 3: EOL program to print number of people who contribute to each task.
1 for(task:ManualTask in ManualTask.allInstances()){
2 task.title.print();
3 task.efforts.person.asSet().size().println();
4 }
5 }algo

In Epsilon’s architecture, there is an Epsilon Connectivity Layer (EMC)7) which enables Epsilon pro-
grams to interact with models in different modelling technologies in a uniform manner by defining the
drivers (e. g., EMF, CDO, NeoEMF).

In Listing 3, line 1 defines the task variable and it goes through all instances of ManualTask. In lines 2-3,
the title of each task and the number of people who contribute to each task are printed.

The program shown in Listing 3 only accesses the title attribute and efforts reference of ManualTask,
the person reference of Effort and no other properties of the PSL metamodel. If the input model of the
program is file-based (e. g. XMI), as the execution engine does not know in advance which parts of the
model the program will access, the entire model needs to be loaded into memory. To run this program
against a repository-based (e. g., stored in a database-backed repository such as CDO or NeoEMF) model,
EOL engine uses the respective driver to fetch all instances of model element types and properties of model
elements on demand.

Therefore, without using in-advance static analysis of the EOL program, there is no way to tell before
executing the program which features of the required model elements should be retrieved from the reposi-
tory. In this situation, there are two alternatives at runtime: either greedily fetch all properties and attributes
of model elements retrieved from the database or lazily fetch attributes and references on demand. The
former strategy favours execution time over memory consumption, while the second strategy requires less
memory, but potentially multiple round-trips to the repository, which can be detrimental to performance.

Considering Listing 3 that uses the title attribute and efforts reference of ManualTask, the person reference
of Effort and no other attributes or references, the two strategies are sub-optimal:
• Greedy: When all instances of ManualTask are fetched in line 1, all their attributes and references

would be fetched too (including ManualTask.duration). As ManualTask.duration is not accessed by the
EOL program, fetching its value from the repository and maintaining it in memory is wasteful.

• Lazy: Using this approach, in line 1, only skeletons of ManualTask elements would be initially fetched
from the database. Then in line 3, for each ManualTask, the program would need to go back to the
database and fetch the value of its efforts reference. So, multiple round-trips to the repository to
fetch the value of the attribute or references of each model element are required. These trips are
time-consuming.

The former strategy favours execution time over memory consumption, while the second strategy
requires less memory, but potentially multiple round-trips to the repository (detrimental to performance).

3.3 Proposed Approach

This section introduces an approach which helps execution engines of model management programs to
handle large models more efficiently. The general goal of this approach is to reduce loading time and
memory footprint, which is achieved by using static analysis for generating an execution plan. The
proposed approach includes three main steps illustrated in Figure 4.

7https://www.eclipse.org/epsilon/doc/emc/
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Figure 4: The proposed approach.

3.3.1 Static Analysis

In the first step of our approach (in Figure 21), a model management program and the metamodels of the
models it consumes are provided as the input to a static analyser. The static analyser computes the abstract
syntax tree of the program; then resolution algorithms including variable resolution and type resolution
are applied to derive an abstract syntax graph [22]. Using the abstract syntax graph, the static analyser can
extract relevant information (i.e., types and properties accessed by the program).

The output of the static analyser is an effective metamodel for every model accessed by the program.
The effective metamodel is a subset of the model’s original metamodel which consists only of types and
properties that are likely to be accessed by the program [22] (see Section 3.3.2).

While static analysis supports multiple models (and therefore produces multiple effective metamodels),
in the remainder of the section we will only consider programs with one model (and therefore one effective
metamodel). To illustrate how every step of the approach works, we use the motivating example of
Section 3.2.

In the first step of our approach, the static analyser sets the resolved types of expressions to types from
the respective metamodels or to primitive types (e. g. String, Integer). For example, in line 1 of Listing 3,
the resolved type of task variable is equal to ManualTask. In line 2, the property call is supposed to print
the title of each task. The title is an attribute of task and the resolved type is String. Then, line 3 accesses
task.efforts.person and task.efforts is a property call where the target of this call is a model element (ManualTask)
and the feature which is called is efforts. In this case, efforts is a reference of ManualTask of Effort type. Table 2
shows the resolved types of expressions which are extracted from Listing 3 by the static analyser.

Line number in Listing 3 Expression Resolved Type

1 task Model Element (ManualTask)

1 ManualTask.allInstances() Operation call expression (Sequence<ManualTask>)

2 task.title Property call expression (String)

2 task Model Element (ManualTask)

3 task.efforts.person.size() Operation call expression (Integer)

3 task.efforts.person Property call expression (Sequence<Person>)

3 task.efforts Property call expression (Sequence<Effort>)

3 task Model Element (ManualTask)

Table 2: Resolved Types Calculated by the Static Analyser.
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3.3.2 Effective Metamodel Computation

The second step of the approach is the extraction of the effective metamodel of the model consumed by
the program from its abstract syntax graph. The concept of effective metamodel was introduced by Wei et
al. [23]. The effective metamodel is constructed with an algorithm (Algorithm 1 which is described later
in the section) that uses the resolved types of expressions and contains only types which are necessary for
executing the program from which it is extracted. In our prototype implementation, effective metamodels
are only computed for EMF-based models, but in principle, this approach can apply to other metamodelling
technologies too.

As shown in Figure 5, an effective metamodel consists of an EffectiveMetamodel class with name and
nsuri attributes. The EffectiveMetamodel class is connected to an EClass that has EStructuralFeatures. The
EffectiveMetamodel class is connected to an EClass by allOfKind, allOfType and types references.

The allOfKind and allOfType references specify the instances of types that the execution engine should
load. The difference between these two references is that allOfKind is used when all instances of a class
(including subclasses) should be loaded. In contrast, allOfType reference means the execution engine should
consider only the elements that are direct instances of the class (without considering any of its subclasses).
The types reference is used for specifying class instances of which should be loaded only when they appear
in the references of model elements of interest.

EffectiveMetamodel

 name: String

 nsuri: String 

EClass

 name: String

EStructuralFeature

 name: String

allOfKind [*]

allOfType [*]

eStructuralFeatures [*]types [*]

features [*]

Figure 5: The Structure of Effective Metamodel (adapted from [23]).

For every class used in the program (such as ManualTask and Effort), an EClass is added in the respective
effective metamodel. The EClass contains collections of structural features that reflect the attributes and
references of the type accessed by the program.

The algorithm which extracts this effective metamodel from an EOL program is described in Algo-
rithms 1 and 2. This algorithm is easily extendable for other Epsilon languages but considering the
motivating example, we will discuss the version that works with EOL program in this section.

In Algorithms 1 and 2, the Abstract Syntax Graph which is extracted by the static analyser is visited.
Algorithm 1 is interested in calls of all() and allInstances() operations and property calls (such as Manual-
Task.efforts) as they are the only way to navigate to model elements in Epsilon programs. In lines 7-11,
the all() and allInstances() operation calls are handled by Algorithm 1 to add the respective EClasses to the
effective metamodel. If the target of the operation call is a model element type, then it will be added to
allOfKind reference of the effective metamodel (line 11) and if it already exists in the effective metamodel
under the allOfType or types references, the EClass is moved to the allOfKind reference.

In lines 15-28, Algorithm 1 handles property calls to further populate the effective metamodel. In
Algorithm 2, if the accessed property is all (it is an alias for allInstances()), then the target element type will
be treated identically to the allOfKind operation call (lines 2-3). When the target of the property call is a
model element, if an attribute of the model element is accessed, it is added to the effective metamodel as
an EAttribute (lines 8-9), or if it is a reference, then it is added as an EReference (lines 10-11).

Figure 6 illustrates the effective metamodel extracted from the EOL program in our motivating example
(Listing 3).

:EffectiveMetamodel

 name: PSL

 nsuri: psl

:EClass

 name: ManualTask

:EClass

 name: Effort

:EClass

 name: Person

:EReference

 name: efforts

:EReference

 name: person
features

eS
tru

ct
ur

al
Fe

at
ur

es

allOfKind

types

eStructuralFeatures

types

:EAttribute

 name: title

Figure 6: Effective Metamodel of the EOL Program (Listing 3).

In Figure 6, the attributes of the EffectiveMetamodel class are filled by the original metamodel, which are
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the name and the nsuri of the metamodel. For running the EOL program, all instances of ManualTask must
be loaded. The ManualTask class is added to EffectiveMetamodel under the allOfKind reference according to
lines 7-11 of Algorithm 1. The title attribute of task is added to the EffectiveMetamodel according to lines 8-9
of Algorithm 2. The efforts reference of ManualTask is also required (line 3 of Listing 3), hence, it is added to
ManualTask as an EReference according to lines 10-11 in Algorithm 2. The resolved type of efforts reference is
equal to Effort (see Table 2), so according to lines 12-13 in Algorithm 2, the Effort EClass is added to effective
metamodel using the types reference and the Person EClass is added to the effective metamodel using the
types reference.

Algorithm 1 EOL Effective Metamodel Extraction Algorithm (1 of 2).

1: procedure computeEffectiveMetamodel
2: while No further changes are made to the effective metamodel do
3: let EM = New effective metamodel;
4: for all operation call expression do
5: if the type of the target of the operation call is a model element type then
6: let EC = retrieve existing EClass for the target model element type;
7: if the name of the operation is all(), allOfKind() or allInstances() then
8: if EC is already under EM’s allOfType or types reference then
9: move EC under EM’s allOfKind reference;

10: else
11: add EC under EM’s allOfKind reference (if not already there)
12: else if the name of the operation is allOfType() then
13: if EC is not already under EM’s allOfType or allOfKind reference then
14: add EC under EM’s allOfType reference;
15: for all property call expression do
16: if the type of the target of the property call is a model element type then
17: let EC = retrieve existing EClass for the model element type of target
18: handlePropertyCallExpression(propertyCallExpression,EC)
19: else if the type of the target of the property call is a collection type then
20: if the collection’s content type is model element type then
21: let EC = retrieve existing EClass for the model element type of the collection’s content type
22: handlePropertyCallExpression(PropertyCallExpression,EC)
23: else if the collection’s content type is Any then
24: for all EClasses in EM do
25: handlePropertyCallExpression(PropertyCallExpression,EClass)
26: else if the type of the target of the property call is Any then
27: for all EClasses in EM do
28: handlePropertyCallExpression(PropertyCallExpression,EClass)

Algorithm 2 EOL Effective Metamodel Extraction Algorithm (2 of 2).

1: procedure handlePropertyCallExpression(propertyCallExpression,modelElementType)
2: if the name of property is ”all” then
3: Consider it as a call to allOfKind in operation call expresion as it is the short term of allInstances()
4: else
5: let EC = retrieve existing EClass for the model element type
6: if EC is not already under the EM’s types, allOfType or allOfKind references then
7: add EC under EM’s types reference;
8: if the property is an attribute then
9: add the property to EC’s structural features as an EAttribute (if not already there)

10: else if the property is a reference then
11: add the property to ET’s structural features as an EReference (if not already there)
12: let EType = the type of the reference
13: add EType under types reference
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3.3.2.1 Accommodating Untyped Variables and Expressions

Algorithm 1 visits the abstract syntax graph to consider all of statements and expressions in the code. Thus,
constructing the effective metamodel relies on the ability of the static analyser to precisely resolve their
types. If in a property call expression the resolved type of the left hand side is unknown (“Any” in terms
of the Epsilon type-system), then the name of the property is added to an unresolvedProperties set. After
the effective metamodel has been extracted, the unresolvedProperties set is used to augment the effective
metamodel with additional FeatureAccess elements for all the types of the effective metamodel that have
features matching properties in the set.

For example, in Listing 4, the title of first Project of input model is printing. All instances of Project with
title attribute and all instances of Task are required for running this part of the program.

Listing 4: EOL Example Code.
1 var p = Project.all().first();
2 var t = Task.all().first();
3 p.title.println("Title: ");

In the first line of Listing 4, the first item of all instances of Project in the model is assigned to p variable.
As the type of p is undefined, the resolved type of p is considered as Any. Hence, condition in line 22 of
Algorithm 1 is not satisfied and title attribute of Project is not added to the effective metamodel in the first
iteration.

Algorithm 1 handles this situation by considering possible (instead of precise) types for variables and
expressions. While this is the case for this minimal example, in the general case, the type of variables
assigned in more than one place in a program cannot be resolved reliably.

In lines 1-2 of Listing 4, according to lines 9-16 of Algorithm 1, Project and Task EClasses are added to
the effective metamodel. Then, the title attribute is accessed by the program but as the resolved type of p is
Any, it adds the title attribute to all EClasses that are already in the effective metamodel. Hence, according
to lines 8-9 in Algorithm 2, title will be added to the effective metamodel for the Project and Task EClasses
and the execution engine will load the title of all instances of Project and the title of all instances of Task into
memory.

:EffectiveMetamodel

 name: PSL

 nsuri: psl

:EClass

 name: Project

:EAttribute

 name: title

:EClass

 name: Task

features

eStructuralFeatures

allOfKind

allOfKind

eStructuralFeatures

Figure 7: Extracted Effective Metamodel for Listing 4.

As shown in Figure 7, the effective metamodel includes an attribute which is not necessary for running
the program (title of Task) but because of lack of information before the execution, the execution engine
loads more information from the repository to be on the safe side. Loading more information and running
the program is preferable to loading less information than required at runtime. As during the execution
of the Epsilon program, more EClasses may be added to the effective metamodel, in line 2 of Algorithm 1,
there is a loop which calculates the effective metamodel until the point that no further changes are made
to it. As the time consumption of extracting the effective metamodel is negligible, repeating the algorithm
will not have a great impact on the efficiency of our approach.

3.3.3 Partial Model Loading

Once the effective metamodels of the different models accessed by a program have been computed, the
next step is to use this information in the execution engine to load model partially. The way that execution
engine interacts with models depends on their persistence format. In this section, first we discuss partial
loading of file-based models and then we focus on partial loading of repository-based models.

3.3.3.1 XMI Model Partial Parser

If the input model is a file-bsed model, then instead of using a default parser of XMI which loads whole
model into memory, we need a partial parser.

Once the effective metamodels of the different models accessed by a program have been computed, the
next step is to make them available to the partial XMI parser. This is done by calling load() function of
XMIN instead of default load() method of EMF driver.
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In EMF, by calling load() method, all content of the model will be loaded into memory, however, in
XMIN, effective metamodels are computed first, and then the model will be loaded based on the informa-
tion provided by effective metamodels. As EMF’s default XMI parser loads the entire model into memory,
for partial loading there is a need for an XMI parser that can load models based on the information provided
by an effective metamodel. For this purpose, we have used the parser described in [23] with fixing some
bugs that we have done to improve the performance of the parser. Therefore, in step 3 of Figure 4, the
parser will load the model based on Java effective metamodel, and the execution engine executes the EOL
program using parts of models that are loaded into memory.

3.3.3.2 Program Execution

We implement this approach in the form of a new Epsilon driver called XMIN, which is an extension of
EMF driver and provides a facility for EOL programs to load EMF models frugally. Epsilon’s architecture
includes an abstraction layer (Epsilon Connectivity Layer (EMC)8), which enables Epsilon programs to
interact with models in different modelling technologies in a uniform manner.

Evaluation
In this section, we report on the results of experiments that measure the performance of XMIN against that
of the existing Epsilon EMF driver (which uses EMF’s built-in XMI parser) in terms of model loading time
and memory consumption.

For our experiments, we implemented 34 EVL constraints9 inspired by the FindBugs10 tool, which
detects a number of “code smells” in models reverse engineered from Java code.

For test models, we used a number of big (reverse-engineered form) Java models from Lintra11 project,
generated using MoDisco [24]. The size and number of elements of the models that were used are
summarised in Table 3.

Name Size (MB) Number of elements

EclipseModel-1.0 184.1 1,470,286

EclipseModel-2.0 365.5 2,957,627

EclipseModel-3.0 627.7 5,057,953

EclipseModel-all 795.4 6,451,757

Table 3: Models used for evaluation.

We generate three sets of EVL constraints from FindBugs program (Table 4). Each of these sets requires
different subsets of models due to a different number of constraints that they validate. Findbugs-Set1 validate
models applying six constraints, and the effective metamodel which is extracted from this program has 52
effective types. Considering Java metamodel that contains 132 types, XMIN parser will load model based
on effective metamodel which contains 60% less number of classes compare to Java original metamodel.

Name Effetive metamodel

Findbugs-Set1 52 classes

Findbugs-Set2 86 classes

Findbugs-all 111 classes

Table 4: EVL constraints sets.

We validate all of models (in Table 3) using Findbugs-Set1 constraints. For executing Findbugs-Set1,
different percentage of models elements need be loaded which is as follow:
• for validating eclipsemodel 1.0, 14.09% of model,
• for validating eclipsemodel 2.0, 14.20% of model,

8https://www.eclipse.org/epsilon/doc/emc/
9https://github.com/Sorour-j/org.eclipse.epsilon/blob/Sorour/org.eclipse.epsilon.partialloading/src/org/eclipse/epsilon/TestUnit/Parser/java-

findbugs.evl
10http://findbugs.sourceforge.net
11http://atenea.lcc.uma.es/projects/LinTra.html
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Figure 8: Memory consumption results.

• for validating eclipsemodel 3.0, 11.93% of model,
• for validating eclipsemodel all, 12.83% of model.
The XMIN driver loads models partially based on the types and features used in the EVL constraints.

As it is shown in Figure 8, using EMF driver, 100% of EclipseModel-1.0 will be loaded, and 650MB (on
average) of memory will be consumed. In contrast, memory consumption is about 150MB (on average) for
loading 14.09% of the same model (EclipseModel-1.0) using XMIN driver; which means 77% less memory
consumption for loading the same model for executing the same set of constraints using two different
drivers (EMF and XMIN).

In the same way, we executed other sets of EVL constraints (in Table 4) against the other three models in
Table 3. Then, we recorded loading time and memory consumption and plotted them against the percentage
of loaded model elements.

We measured memory consumption and time 12 times for validating each model (overall 108 times)
and collected the results illustrated in Figure 8 and Figure 9.

In our results, memory consumption shows a linear behaviour with regard to the percentage of re-
quired/loaded model elements. As shown in Figure 8, even when only a subset of the model is required for
evaluating the EVL constraints, EMF’s XMI parser still loads the entire model. Thus, memory consumption
remains practically constant regardless of the set of EVL constraints evaluated on the models.

In contrast, XMIN only loads the elements which are required. Therefore, when only 14.20% of the
model (in EclipseModel 2.0 chart) is necessary for executing, model loading through XMIN requires 84%
less memory (200 MB compares to 1200MB). As the percentage of required elements increases, memory
consumption increases with it.

XMIN has the same behaviour in terms of loading time. When the number of required model elements
is smaller, loading time is lower, in contrast to Epsilon’s EMF driver, where loading time is constant.

Regarding the XMIN driver’s correctness, we validated all models against the full set of constraints
with both drivers and verified that the satisfied and unsatisfied constraints produced in all execution pairs
were identical. This means that the XMIN driver loads all the information that the constraints need to
access from each model.

Logically when 100% of the model should be loaded, XMIN will require more time and memory due
to the overhead of extracting effective metamodel. Thus, maybe switching to EMF driver in this situation
would be more reasonable.

3.3.3.3 Neo4j Query Generation

In the third step of our approach, we wish to generate queries in Neo4J’s Cypher query language, that will
fetch (1) only the part of the model that conforms to the effective metamodel extracted in step 1 and (2) do
this as efficiently as possible. After statically analysing the program and identifying the part of the model
it is likely to access at runtime in the form of an effective metamodel. Mapping EMF Models to Graph
Databases
In this work we are concerned with the efficient management of models that reside in graph-based model
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Figure 9: Loading time results.

repositories as these have been shown to outperform model repositories backed by relational/document
databases [13, 25]. A state-of-the-art graph-based model repository is NeoEMF, which enables the persis-
tence of EMF-based model in Neo4J graph databases (among others). Our first attempt was to implement
our efficient model loading approach on top of NeoEMF, however the framework cannot support partial
model element loading without a significant amount of refactoring. Therefore, we chose to implement a
custom mapping of EMF models to Neo4J databases, which we discuss in this section.

Figure 10 shows a model which conforms to the PSL metamodel in Figure 3. The project named as
“ACME” consists of three tasks: “Design” is a ManualTask which has to be completed by Bob (40 % effort)
and Alice (60 % effort); “Implementation” is also a ManualTask equally split among Alice and Bob (50 %
each) and “Meeting organisation”, which is an Automated Task.

:Project

 title = ACME

: ManualTask

 title = Design

 start = 1

 duration = 3 

:ManualTask

 title = Implementation

 start = 7

 duration = 6 

:AutomatedTask

 title = Meeting organisation

:Effort

 percentage = 60

:Effort

 percentage = 50

:Effort

 percentage = 50

:Person

 name = Alice

:Person

 name = Bob

:Effort

 percentage = 40

Figure 10: PSL Model of the ACME Project.

In order to map EMF-based models such as this one to a Neo4J graph, we use the mapping strategy
illustrated in Figure 11. Using this strategy, every model element is mapped to a Node in the graph and the
properties of the node are set to the values of the attributes of the element. For example in Figure 11, ACME
is an instance of Project in the model which has a title attribute; hence a corresponding node is created in
the graph and the title property of the node is set to ACME. For Design, which is an instance of ManualTask,
its duration and start attributes are copied to the respective node.

In Neo4j graphs, nodes can have labels. In our approach, the label of each node is set to the type of the
respective model element and its super types. Thus, in Figure 11, the label of ACME is set to Project and
the labels of Design are set to Task and ManualTask. As the labels of nodes are unordered, to understand
which label corresponds to the exact type of the node, we can load all labels of each node and by using the
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structure of metamodel, find the exact type of node. However, it is more efficient to connect each node to
another node that has the name of its type, using an instanceOf edge to capture the type of the node.

In Figure 11, there is an Edge in the graph which connects the created node to the Project node to capture
the type of the node and an edge which connects the Design node to ManualTask.

:Project

 title = ACME

: ManualTask

 start = 1

 title = Design

 duration = 3 

:Person

 name = Bob

:Effort

 percentage = 40

 Node ID = 1  
 Labels: Project 

Properties: 
title: ACME 

task task

effort

person

instanceOf

instanceOf

instanceOf

instanceOf

effort

person

 Node ID = 3 
 Labels: Effort 
Properties:  

  percentage: 40 

 Node ID = 4 
 Labels: Person 

Properties: 
  name: Bob 

 Node ID = 5 
Properties: 

name: Project 

 

 Node ID = 7 
Properties: 

  name: Effort 

 Node ID = 8 
 Properties: 

  name: Person 

Map

Map

Map

Map

Node ID = 2 
 Labels: Task,
ManualTask 
Properties : 

  title: Design, start: 1,  
duration: 3

 Node ID = 6 
Properties: 

  name: ManualTask

Figure 11: Mapping the Model of Figure 10 into a Neo4J Graph.

Model Loading
Cypher is a language for querying Neo4j databases. Hence, by generating Cypher queries based on the
effective metamodel, EOL’s execution engine will be able to load the required parts of model for running
the program.

Cypher expression Pattern Functionality

MATCH (var: label of node) loading all nodes with the same label

OPTIONAL MATCH (var:source node)- [var:edge ]->(var:target node) return the target node of the matched edge

RETURN node.property return the certain property(es) of the matched nodes

Table 5: Cypher Expressions

The Cypher expressions that are used for loading information in our approach are listed in Table 5 (var
stands for variable).

The first column of Table 5 lists the Cypher expressions, the second column is the pattern that each
expression follows and the third column is the functionality of the expression.

Using these three expressions, the queries of Listing 5 are generated based on the effective metamodel
in Figure 6.

Listing 5: Generated Cypher Queries According to Effective Metamodel in Figure 6.
1 MATCH (task:ManualTask)
2 RETURN ID(task), task.title
3 OPTIONAL MATCH (task:ManualTask)-[taskins:instanceOf]->(taskType)
4 RETURN taskType.name
5 OPTIONAL MATCH (task:ManualTask)-[effortRefTask:effort]->(effort:Effort),(effort)-[effortins:instanceOf]
6 ->(effortType)
7 RETURN ID(effort), effortType.name
8 OPTIONAL MATCH (effort:Effort)-[personRefEffort:person]->(person:Person),(person)-[personins:instanceOf]
9 ->(personType)

10 RETURN ID(person), personType.name

Considering the effective metamodel in Figure 6, all instances of ManualTask are required for running
the program (EOL code in Listing 3). Hence, all nodes with the ManualTask label should be loaded. The
MATCH keyword matches all nodes with the specified label in the graph. The generated query in line 1 of
Listing 5 loads all ManualTask nodes.

After matching all ManualTask nodes, the ID of each task has to be loaded in order to distinguish
between different ManualTask instances. Line 2, shows the Return query to fetch the ID and the title attribute
of ManualTask nodes from the database.

Beyond the ID, the exact type of ManualTask instances is also needed, which is specified by the “in-
stanceOf” edge. In case of references, the MATCH and OPTIONAL MATCH expressions are used to match
the edges of the source node and return the respective target nodes. Using MATCH is a strict condition and
if there are no matches in the database, the query will fail to run and it does not return any result. With
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OPTIONAL MATCH on the other hand if there is no match, query will be run and “null” will be returned
as a value of the edge which is not matched. Hence, OPTIONAL MATCH is a better fit for matching the
references of each node. The query for requesting the type of ManualTask nodes, is shown in line 3 and the
name property of taskType is returned using the RETURN expression in line 4.

One reference of ManualTask instances is required according to the effective metamodel. The efforts
reference is an edge between ManualTask and Effort nodes and the query in line 5 matches this reference.
In lines 6-7, instanceOf reference is matched to find the type of the Effort node. According to the effective
metamodel, attributes of Effort are not required, so only the ids and types of Effort nodes are returned in
line 6.

The person reference and the instanceOf reference of Effort are matched in line 7 and the query that
returns the ID and type of Person is shown in line 8.
Query Optimisation
The goal of our approach is to reduce the number of database hits and load as much information as possible
in each access to the database to minimise the overall execution time. The Neo4j documentation12 offers
some recommendations to reduce the execution time of Cypher queries. We have applied some of them to
optimise the automated query generation in our approach.
• Using Labels: Nodes are labeled by the type and super types of their corresponding model element.

These labels are then used by generated queries to efficiently match nodes of different types.
• Avoid Cartesian Products: If two different node labels without any relationships between them

are matched in a Cypher query, it is considered as a disconnected pattern. Generating a query for
disconnected patterns will build Cartesian products between two node types, which would not be
efficient as it will return a number of records which are not necessary for executing the program.
For example, considering the PSL metamodel (Figure 3), there is no relationship between nodes with
AutomatedTask and Person labels. So, in Listing 6, Neo4j matches each AutomatedTask node with all
Person nodes. Suppose that the number of nodes with AutomatedTask label is equal to m and the
number of nodes with Person label is equal to n. The number of returned records from database will
be equal to n*m. However, if Listing 6 is separated into two MATCH clauses, then the number of
records will be (n+m), which is more efficient.

Listing 6: A Cypher Query that Generates Cartesian Products.
1 MATCH (autoTask:AutomatedTask), (p: Person)
2 RETURN autoTask.title, p.name

Thus, we consider a trade-off between generating fewer queries and avoiding Cartesian products.
In our approach, MATCH clauses are generated for allOfKind types in the effective metamodel. This
is efficient as in each MATCH clause, the label of each node will be matched and then all required
properties and references of node in the effective metamodel, will be returned. Considering the
generated queries in Listing 5, there are three MATCH clauses that are related so they can be combined
in one query for efficiency. The combined query is shown in Listing 7.

Listing 7: Optimised queries of Listing 5.
1 MATCH (task:ManualTask)
2 OPTIONAL MATCH (task)-[taskins:instanceOf]->(taskType),(task)-[effortRefTask:effort]->(effort:Effort)
3 ,(effort)-[effortins:instanceOf]->(effortType),(effort)-[personRefEffort:person]->(person:Person)
4 ,(person)-[personins:instanceOf]->(personType)
5 RETURN ID(task), task.title, taskType.name, ID(effort), effortType.name,ID(person), personType.name

• Reduce Cardinality: Since nodes are labeled by the type of their respective model element and its
super types, the results of some queries can overlap. For example, in Listing 8 all nodes with Task
and ManualTask label are matched and the titles of matched nodes are returned. Considering the part
of the graph in Figure 12, the nodes returned in line 2 are “Design”, “Implementation” and “Meeting
organisation” nodes since they are labeled as Task. The titles of the nodes that are returned in line 4,
are “Design” and “Implementation” nodes which are ManualTask-labeled nodes. The “Design” and
“Implementation” nodes are returned twice (in lines 2 and 4). This redundancy is because of querying
two classes (Task and ManualTask) that have an inheritance relationship. Therefore, it is more efficient
to execute only the first query in lines 1-2, which covers all nodes that are loaded by both MATCH
clauses. Algorithm 3 generates Cypher queries automatically based on the effective metamodel.

Listing 8: Queries with Overlap.
1 MATCH (task:Task)
2 RETURN task.title
3 MATCH (manualTask:ManualTask)
4 RETURN manualTask.title

12https://neo4j.com/blog/tuning-cypher-queries/
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Figure 12: A part of graph model.

Algorithm 3 Cypher Queries Generation (1 of 2).

1: let EM = calculated effective metamodel
2: for all EClass in EM.allOfKind do
3: let matchString = ””;
4: let visitedClasses = Set of EClasses
5: let optionalMatch = Set<String>
6: let return = Set<String>
7: matchString←EClass.name
8: Add ID of EClass and name of instanceOf reference of EClass to return set
9: call HANDLEFEATURES (EClass)

10: let query =“”;
11: query← “MATCH”+ query
12: for all item in match array do
13: query←item + ”,”;
14: query← “OPTIONALMATCH”+ query
15: for all item in optionalMatch array do
16: query←item + ”,”;
17: query← “RETURN”+ query
18: for all item in return array do
19: query←query + item + ”,”;

3.3.3.4 Program Execution

After retrieving information from the database file, this information is used by the execution engine to
run the EOL program. In this approach, we use EMF driver of Epsilon to run the EOL program to avoid
implementing a new driver with almost same functionality. Therefore, in the last step of our approach, in
the execution engine, the results of queries are wrapped as an EMF input and the program is run by Epsilon
EMF driver.

Evaluation
In this section, we report on the results of experiments that measure the performance of our approach

against that of NeoEMF in terms of execution time and memory consumption.
We evaluated our approach by a system using Java VM 14.0.1 with Intel(R) Core(TM) i7, 16 GB memory

and CPU @ 2.80 GHz running Mac OS X Catalina.
For our experiments, we have used the models proposed in the GraBaTs 2009 contest [26]. The models

conform to an Ecore-based metamodel of the Java programming language and have been reverse-engineered
from open-source Java projects. There are five XMI models, from Set0 to Set4, each one larger than its
predecessor (from a 8.8 MB XMI file with 70 447 model elements representing 14 Java classes to a 646 MB
file with 4 961 779 model elements representing 5984 Java classes). We produced Neo4j graphs from the
GraBaTs XMI files and saved them in the Neo4j (version 4.4.3) embedded databases.

We have also implemented a query in the Epsilon Object Language (EOL) inspired by one of the
GraBaTs13 test cases. This query finds all classes that declare public static methods whose return type is the

13http://https://web.imt-atlantique.fr/x-info/atlanmod/index.php?title=GraBaTs 2009 Case Study
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Algorithm 4 Cypher queries generation (2 of 2).

1: procedure handleFeatures(EClass)
2: Add the EClass to visitedClasses
3: for all features in EClass.eStructuralFeatures do
4: if feature is an EAttribute then
5: add the feature to return set
6: else if feature is an EReference then
7: let type = Type of reference value
8: Add ID of reference’s target to return set
9: optionalMatchString← (EClass.name) − [re f erence.name]→ (type)

10: if Eclass is not in visitedClasses and EClass is EM but not in allOfKind then
11: handleFeatures(type)

ID(task) task.title taskType.name ID(effort) effortType.name ID(person) personType.name

2 ”Design” ”ManualTask” 10 ”Effort” 9 ”Person”

2 ”Design” ”ManualTask” 12 ”Effort” 7 ”Person”

6 ”Implementation” ”ManualTask” 13 ”Effort” 7 ”Person”

6 ”Implementation” ”ManualTask” 14 ”Effort” 9 ”Person”

Table 6: Result for the Execution of Generated Query in Listing 7.

containing class itself (i. e. like the getInstance method of the Singleton pattern).
For our experiments, we ran the EOL program against Set0-Set4 graphs in the database using our

approach and NeoEMF and measured the execution time and memory consumption. The results are
shown in Table 7. The results were computed after 5 warm-up iterations and represent the average over 10
executions of the program. For instance, for Set1, it takes 8.3 s and 118 MB of memory to run the GraBaTs
query using our approach while for NeoEMF, the average time is equal to 9.5 s and memory consumption
is 656.2 MB which is about 5.5 times higher than our approach. The most significant difference in memory
usage is in Set3 case, where the memory footprint of our approach is 93 % lower than NeoEMF.

The charts illustrated in Figures 13 and 14 show the linear behaviour of two approaches. In Figure 13, in
the Set0 model, as the model is not very large, the overhead of effective metamodel extraction and loading
data from database in our approach is not compensated at runtime and the execution time is better for
NeoEMF. As the size of the model grows, the slope of the diagram is greater in NeoEMF compared to our
approach, which means our approach is more efficient in terms of execution time. The highest percentage
of time saving is 74 % for Set2.

In Figure 14, both approaches have a linear behaviour, and our approach consumed less memory
compared to NeoEMF. From Set0 to Set4, as the size of model increased, the memory consumption grew in
two approaches.

On average, using our approach, memory consumption is lower by 84 % and execution time is lower
by 37 % compared to NeoEMF.
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Figure 13: Execution time comparison of our approach and NeoEMF.

Regarding correctness, we validated all models by executing each program with two approaches (our
approach and NeoEMF) and verify that the output produced by all execution pairs should be equivalent
(e. g. in the number of people for each task in EOL and NeoEMF).

20



Model Our Approach NeoEMF

Execution Time (s) Execution Memory (MB) Execution Time (s) Execution Memory (MB)

Set0 (70 447 model elements) 8.1 108 5.7 319

Set1 (198 466 model elements) 8.3 118 9.5 656.2

Set2 (2 082 841 model elements) 12.2 210 61.5 2537.5

Set3 (4 852 855 model elements) 37.3 232.8 114.6 3718

Set4 (4 961 779 model elements) 41.5 318.1 126.4 2987.2

Table 7: Experiment Results.
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Figure 14: Memory comparison of our approach and NeoEMF (logarithmic scale).

3.4 Related Work

Providing infrastructure for storing and indexing large models is an essential aspect of scalable MDE.
Scalable Model Persistence researches are divided into two subcategories [27]: Efficient Model Storage and
Model Indexing.

In the case of efficient model storage, the common format which is currently used for storing models is
XML Metadata Interchange. While XMI is a suitable way of storing small models, it has some limitations
when it deals with large models.

A limitation we are facing in XMI format is the lack of support for partial loading. It means that in
order to access any element of model, the whole of model file should be parsed and loaded to memory first.
Many state-of-art modelling tools such as EMF have this issue, which is not efficient in terms of time and
memory consumption.

Another issue is about XMI file size. As XMI is a verbose XML-based format, the XMI model files are
larger than needed for storing the information they do. To address these limitations, Jouault et al. [28]
introduced an open binary format known as Binary Model Syntax (BMS), and they claimed that initial
experiments show that BMS files are three times smaller than corresponding XMI files. Also, due to lazy
loading support and persistence indexing, BMS format is more efficient to access model elements, and it
can be a high-performance alternative to XMI. However, while BMS was introduced in 2009, there has not
been any update or release of this format in the public domain until now.

There are works related to model indexing. Some of the related works in this field are related to
repositories. Repository is considered as a persistence solution that is remotely accessible by tools and
users. Model bus [29] is a basic model repository based on EMF that allows modelling services to be
connected. While the back-end provides useful features, it only offers limited scalability (in terms of model
size) as it does not support partial access to models.

The Connected Data Object (CDO) [30] is another model repository for EMF models and metamodels.
It is also a framework built on top of the EMF, which provides the persistence of large models. Figure 15
provides an overview of CDO architecture.

As shown in Figure 15, CDO supports persistence, which means users can store their models in all kind
of major databases back-ends like ODB, NoSQL and RDB and transforms models in all of the supported
back-end types quickly.

Another property of CDO is scalability, which is achieved by loading object on-demand strategies and
caching them in the application. Hence, it does not keep the objects which are no longer referenced by the
application, and they are collected from the memory automatically.

However, one concern with CDO is that it implements its own version control management system,
and regarding industry adoption, using a separate version control system for models only is not practical.
Moreover, although CDO claims to be able to load models up to 4 GB, experimental evaluation with Intel
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Figure 15: CDO Architecture [30].

CoreI5 760 PC at 2.80 GHz with 8 GB of physical RAM in [31] reported an upper bound of 271 MB.
Morsa [31] is a persistence solution for storing and accessing large models based on on-demand strate-

gies, which is supported by the NoSQL database. Figure 16 illustrates an overview of Morsa architecture.

Figure 16: Morsa Architecture [31].

Morsa driver allows client applications to access models through the modeling framework persistence
interface. Further, Morsa provides clients with a partial load of large models using a load on demand
mechanism, which has been designed to achieve scalability. This mechanism reduces database queries,
and it is aimed at managing memory usage based on an object cache that holds loaded model objects.
Cache policy is configured to manage the object cache that decides which object must be unloaded when
the cache is overloaded. Four cache policies are supported by Morsa such as First In-First Out (FIFO), Last
In-First Out (LIFO), Less Recently Used (LRU), and Largest Partition First (LPF). The choice of cache policy
is currently made by the end-user.

Morsa satisfies scalability requirements, but it is just a prototype, and there is no update that they plan
to consider crucial issues like security in order to deploy this prototype in an industrial context. Also,
choosing the cache policy is manual, and the user should select the policy using a GUI [31].

Neo4EMF [13] is a persistence layer for EMF models. It is built on top of Neo4j that is a graph-based
database, as these databases are able to manage large-scale data on highly distributed environments.
Moreover, Barmpis and Kolovos [32] suggest that NoSQL databases would provide better scalability and
performance than relational databases due to the interconnected nature of models. Neo4EMF is similar to
Morsa in several aspects (notably in on-demand loading), but it aims at exploiting the optimized navigation
performance offered by graph-databases. While Neo4EMF is a more performant alternative to XMI due
to high-performance access and on-demand loading, its raw performance do not surpass a more mature
solution like CDO.

SmartSAX is another prototype which was introduced in [23]. It supports partial loading of XMI
model files. That is, instead of loading the entire file when we need even an element of the model, it
makes it possible to load the elements of model based on need. The main idea is providing in-advance
knowledge of program (which kind of model elements and which of their properties are accessed by the
model management program) can be used to partially load only a subset of XMI-based EMF model into
memory. While in full XMI loading, the time consumption and memory footprint are practically negligible
for loading of small XMI models but for large models in the industrial context, it would be problematic.

SmartSAX also has some limitations. First, it just supports read-only XMI files (does not support
changes made to partially loaded model). Also, as partial loading can affect the internal structure of the
XMI model, elements should have IDs that do not depend on their position in the containment hierarchy.
Finally, SmartSAX currently does not support loading models that are persisted in multiple XMI files.

In [33], Daniel et al. propose PrefetchML, a domain-specific language that describes prefetching and
caching rules over models. PrefetchML is a suitable solution to improve query execution time on top of
scalable model persistence frameworks. While the rules to describe the event conditions to activate the
prefetch, the objects to prefetch, and the customisation of the cache policy are defined by designers in
PrefetchML, the automatic generation of PrefetchML scripts based on static analysis of available queries
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and transformations for the meta-model would be more efficient in term of optimization.
Although recent research has made advancements in this area, existing solutions have clear shortcom-

ings in accessing and processing large models. The first shortcoming is about loading models. Repositories
such as Morsa, CDO provide remote access of large models and store them in a graph-based or relational
database. Still, as some tools are based on EMF, and the common format for storing models is XMI, there
is a need for partial access to XMI models, which loads models using on-demand strategies. In addition,
loading and storing models by elements is not an efficient way, so the second challenge is about partitioning
models. Intelligent strategies for grouping model elements as a partition are needed. Finally, intelligent
unloading strategies are needed. Keeping part of models loaded into memory that will not be used fur-
ther increases the memory footprint unnecessarily. Hence, unloading them when the program does not
refer to them anymore would be a solution for reducing the memory consumption of model management
programs.
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4 Query Optimisation

Model querying is an essential part of many automated model management activities, such as model-to-
model and model-to-text transformation and model validation. Queries on models can be specified using
general-purpose programming languages such as Java or using tailored model-management languages such
as Object Constraint Language (OCL) – and its various flavors embedded in model-to-model and model-
to-text transformation languages such as Acceleo and ATL – the Epsilon Object Language (EOL) and the
task-specific languages that build on top of it, and the VIATRA Query Language (VQL). The main strength
of dedicated model management languages is that they offer built-in abstractions for common tasks (e.g.
rule-based decomposition and element resolution in model-to-model transformation, protected regions
for mixing generated and hand-written content in model-to-text transformation, constraint dependency
management in model validation) which facilitate more concise, maintainable and technology-independent
model management programs.

The main shortcoming of dedicated model management languages compared to general-purpose lan-
guages such as Java is performance. While widely-used general-purpose languages are typically com-
piled and benefit from advanced runtimes offering advanced features such as adaptive optimisation and
microarchitecture-specific speed-ups, model management languages are predominately interpreted, and
therefore their execution speed is substantially lower. This can become a scalability bottleneck as models
grow in size and inhibit their applicability to projects that involve large models [34, 35].

4.1 Research Objectives

Objectives: As software systems become more complex, underlying models in LCEPs grow proportionally
in both size and complexity. Such models can be persisted in a variety of proprietary or standard formats
(such as XMI), and in different types of back-ends (e.g. file systems, relational databases, document
databases). High-level, concise and tailored model query languages such as OCL and EOL can be used to
shield query developers from the intricacies of the underlying model formats/back-ends but this typically
has a significant impact on performance. Recently, we have shown how sophisticated runtime query
optimisation can be used to drastically improve the execution time of high-level OCL-style queries executed
over models stored in relational [36] and non-relational [37] databases. The objectives of this project
are to: (1) investigate the applicability of runtime query optimisation techniques to a wide range of
model persistence formats and back-ends, (2) identify reusable optimisation primitives and patterns across
different formats and back-ends, and (3) evaluate the obtained benefits in terms of performance and memory
footprint.

Expected results: This project will produce novel techniques and algorithms for optimisation of queries
operating on low-code system models captured using different modelling languages and model represen-
tation formats. It will also produce an open-source prototype that will implement the identified algorithms
and techniques on top of existing model query languages. While the precise performance benefits will
depend on the nature of individual queries and the underlying model representation formats, based on our
preliminary results in [36], we expect an increase of at least one order of magnitude in query execution time
for certain classes of queries (e.g. filtering all instances of a type). The breakdown of the overall research
objective is as follows:

RO-1: Identify the performance challenges involved in executing complex queries over large models
represented in heterogeneous formats (such as XMI etc.) and stored in different back-ends (Simulink and
relational databases etc.).

RO-2: Identify reusable optimisation primitives and patterns across different formats and back-ends using
static analysis of high-level language code.

RO-3: Investigate the applicability of compile-time query optimisation techniques to a wide range of
model persistence formats and back-ends.

RO-4: Propose algorithms for optimisation of queries operating on low-code system models captured
using different modelling languages and model representation formats.

RO-5: Evaluate the results of proposed algorithms in terms of execution time and memory footprint
over various back-end technologies.

Considering the research challenges and objectives, we propose an approach for optimising queries
operating over heterogeneous low-code system models. The primary purpose of this framework is to be able
to automatically rewrite expensive queries in an input model management program written in technology-
agnostic language operating over heterogeneous models to a more efficient form. The rewritten program
should be efficient in terms of execution time. The rewriting process will consider memory footprint to make
a trade-off. Program rewriting is based on information extracted through static analysis. The rewriting

24



and optimisation will vary based on the specific backend technology or technologies the query is operating
over. To our knowledge, we have not found a solution to this problem in the literature.

In a low-code platform, the underlying models can be of different modeling technologies and stored in
different backend formats. After a model management program is parsed, an Abstract Syntax Tree (AST)
is generated. This AST may not include any type information attached to its nodes. Before execution, the
static analyser component will analyse the program and populate type-related information into the AST,
also referred to as an Abstract Syntax Graph. Abstract Syntax Graph would then be used by the rewriters
involved in a program (depending on the type of models it needs to access), to rewrite this program behind
the scenes into an optimised form.

4.2 MySQL Models

Listing 9: Example EOL program interacting with MySQL DB.
1 model DB driver MySQL {
2 server = "localhost",
3 port = "3306",
4 database = "requirements",
5 username = "root",
6 password = ""
7 }
8 var functionReq = MySql!Requirement.all.select(m | m.type = "functional");

As a preliminary query optimisation idea, we have implemented query translation for a subset of
EOL expressions as in Listing 9 to MySQL queries as in Listing 10. A part of this is presented in [10].
This translation is done before the execution of program. Query translation enables to query large-scale
relational databases while still using tailored model query languages. In an MDE platform, sometimes
some information such as requirements about another model are stored in relational databases. So for tasks
like cross-validating a Simulink model and its requirements stored in a MySQL database, there is a need to
interact with relational database using model management language.

Listing 10: Rewritten EOL program interacting with MySQL DB.
1 model DB driver MySQL {
2 server = "localhost",
3 port = "3306",
4 database = "requirements",
5 username = "root",
6 password = ""
7 }
8 var functionReq = MySql.runSql("Select * from Requirement where type = functional");
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Figure 17: Proposed approach for custom indices.

We introduce an architecture for improving the execution speed of interpreted model management pro-
grams written in languages of the Epsilon platform, using static analysis and program rewriting techniques.
The architecture of the proposed approach is illustrated in Figure 17. We then demonstrate an application
of this architecture for detecting repeated queries on all instances of types in EMF-based models and for
speeding-up their execution through the construction of relevant indices. We have evaluated the proposed
optimisation technique using large models that have been reverse engineered from Java code and a set of
existing constraints.
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4.3.1 Motivating Example

In this section, motivation behind this work will be presented through an example scenario. Let us consider
an example where we query a model for the purpose of validating it. The considered model is conforming
to the UML214 EMF-based metamodel. An excerpt of the UML2 metamodel is shown in Figure 18. In this
example, suppose we wish to validate the model on the following constraints:
• the names of all classes in the model are unique,
• all class methods are called in at least one sequence diagram.
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Message

messageSort : MessageSort
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Figure 18: Excerpt of UML metamodel.

The implementation of the two above-mentioned constraints (using the Epsilon Validation Language) is
presented in Listing 11 respectively. These validation scripts can conceptually be written in any model
management language. Here we consider EVL, as it allows cross-validation between models of various
backend technologies. It can take benefit of heterogeneous model query optimisation in a single program.

In Listing 11, the UniqueName constraint checks that for every Class in the model, its name attribute is
unique (lines 7- 12). Similarly, IsCalledInSequenceDiagram constraint checks that every Operation is called in
a sequence diagram at least once (lines 13-18). An Operation call is represented by Message in a sequence
diagram.

Epsilon languages use all as an alias for allInstances(). In Listing 11, Class.all in line 9 and Message.all in
line 15 retrieve all instances of Class and Message anywhere in the model respectively.

Evaluating these constraints over a large UML model containing a large number of classes and operations
would be computationally expensive. Theoretically, the complexity of UniqueName constraint is O(N*N) if
we consider the number of Classes to be N. The complexity of evaluating IsCalledInSequenceDiagram over
M operations and P messages would be O(M*P).

This sort of reverse navigation is a recurring issue in model management programs [38] when working
with EMF models. A common workaround to reduce complexity in such scenarios is to define opposite
references (e.g we could define an opposite reference from NamedElement to Message) however this pollutes
the metamodel and in the case of standard meta models (e.g. such as the UML2 metamodel used in this
example) adding opposite references is not an option. Moreover, we have to either anticipate the needs of
future model management programs when we’re constructing the metamodel or to naively add opposites
for all references in the metamodel.

Listing 11: Example EVL validation constraints before optimisation.
1 model UML driver EMF {
2 nsuri = "http://www.eclipse.org
3 /uml2/5.0.0/UML"
4 };
5 pre {
6 }
7 context Class {
8 constraint UniqueName {
9 check: not Class.all.exists

10 (c|c.name = self.name and self != c)
11 }
12 }
13 context Operation {

14https://www.eclipse.org/modeling/mdt/?project=uml2
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14 constraint IsCalledInSequenceDiagram {
15 check: Message.all.exists
16 (m | m.signature = self)
17 }
18 }

To speed up this type of model validation, one optimisation strategy is to programmatically create
in-memory indices and then use them for look-ups. Existing languages such as Acceleo offer different
facilities for this e.g. search for eInverse15. Another approach for using reverse navigation in OCL is shown
in [38]. This can significantly reduce the complexity compared to the naive iteration through all instances
of the relevant model element types. Such an optimised validation program is depicted in Listing 12. These
constraints are semantically equivalent to the ones in Listing 11 but are much faster to execute. In Line
6 of Listing 12, an index is constructed which maps names to lists of classes with their name attribute,
rather than naively iterating through all the instances of Class. Similarly, in Line 7, an index is constructed
which maps names to lists of messages with their signature attribute, rather than naively iterating through
all the instances of Message. Then in constraints, these constructed in-memory indices (Lines 11-13, 18-20)
are searched instead. As in-memory indices can be stored as hashmaps, finding UML classes by names
and similarly finding messages by signature, the computation cost would be that of a hash function.
Considering the complexity of hash functions being O(1), the overall complexity of both the constraints
would be reduced to O(N) and O(M), respectively. Another possible optimisation could be translating to
the model management languages that supports incremental approach.

Listing 12: Example EVL validation constraints after optimisation.
1 model UML driver EMF {
2 nsuri = "http://www.eclipse.org
3 /uml2/5.0.0/UML"
4 };
5 pre {
6 UML.createIndex("Class", "name");
7 UML.createIndex("Message", "signature");
8 }
9 context Class {

10 constraint UniqueName {
11 check: not UML.findByIndex
12 ("Class", "name", self.name)
13 .select(c|c.self != c).size() > 0
14 }
15 }
16 context Operation {
17 constraint IsCalledInSequenceDiagram {
18 check: UML.findByIndex("Message",
19 "signature", self).size() > 0
20 }
21 }

4.3.2 Proposed Approach for Custom Indices

EMF is the most widely used modeling technology in the MDE community. We developed a query optimi-
sation strategy for EMF-based models of building in-memory indices (hashtables) using static analysis and
automated program rewriting. This is presented as a conference paper in [11]. This approach supports
both EOL and EVL programs. A program is traversed to find optimisable expressions i.e., Iterating the
results of allInstances(). This gives us the possible in-memory indices to create. Then, through call graph
analysis we identify if any index is likely to be used multiple times in a program. We add an index in
list of potential indices only if that is detected to be used multiple times. Finally, we rewrite the program
which includes injecting createIndex() statements to construct indices from list of potential indices (as shown
in Algorithm 5) and secondly to rewrite the original expressions to make use of the indices as shown in
Listing 12. In-memory indices create an overhead of populating indices which is paid off if an index is used
multiple times in a program. This is the reason we use call graph analysis to manage the overhead.

4.3.3 Evaluation

The execution-time performance of the proposed approach to optimise EVL programs over large-scale EMF
models has been evaluated. In the rest of the section, the first approach is referred to as EVL – since it
executes the EVL programs in a naive parallel mode, while the second one is referred to as EVL-QR –
since it makes use of the query rewriting strategy, on the top of the EVL engine in parallel mode. We also
compare our results and presented speedups compared to OCL. For OCL evaluation, we wrote the same
Java FindBugs in OCL and reported the execution time. The computation time taken for the static analysis

15https://www.eclipse.org/acceleo/documentation/

27



Algorithm 5 Algorithm for Finding Potential Indices.

1: let model = current model rewriter (separate rewriters for every model)
2: let inLoop = false
3: let allOperations = all, allInstances
4: let optimisableOperations = select, exists
5: let callGraph = call graph of the input program

optimiseBlock(main statement block)
6: procedure optimiseBlock(StatementBlock)
7: for all statement s in StatementBlock do
8: if s is a ForStatement or WhileStatement then
9: inLoop = true optimiseBlock(body of s)

10: else if
then

11: visit every DOM element recursively
12: else

optimiseStatement(s)
13: procedure optimiseStatement(Statement)
14: if s is an OperationCallExpression then
15: repeat

optimiseStatement(target of s)
16: until targetExpression is instance of NameExpression
17: for all Parameters of s do
18: repeat

optimiseStatement(parameterExpression)
19: until parameterExpression is instance of NameExpression
20: if s is an FirstOrderOperationCallExpression then
21: if target of s is a PropertyCallExpression or OperationCallExpression then
22: if allOperations contains name of target then
23: if optimisableOperations contains operationName of s then
24: if target of propertyCallExpression is owned by model then
25: if inLoop then
26: add to Potential Indices
27: for all op in getDeclaredOperations do
28: if path p from main to op exists then
29: if p contains an edge labelled as loop then
30: inLoop= true

optimiseBlock(body of op)
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Figure 19: Comparison of OCL, EVL and EVL QR (a) with eOpposites (b) without eOpposites.

and query rewriting processes has been measured to assess the overhead they incur. Then, the execution
time of the program itself is recorded, as this approach does not interact with model loading and thus has
no effect on model loading times.
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Observing the comparison graph shown in Figure 19, we see that EVL with query rewriting is sub-
stantially more performant than EVL. In a naive EVL execution, observing the comparison graph shown
in Figure 6, we see that EVL with query rewriting is substantially more performant than EVL. In a naive
EVL execution, as the model size grows, the execution time increases non-linearly, in this case from about
7 seconds to 130 minutes for models with 100k elements to 4.35M elements, respectively (a three order of
magnitude increase, for models of around one order of magnitude in variance). In comparison with EVL,
EVL-QR speeds up the validation by 5.6x for the smallest model and 228.18x for the largest model. While in
comparison with OCL, EVL-QR speeds up the validation by 97.6x for the smallest model and upto 579.2x
and even more for larger models where OCL’s performance is timed out. This gives us confidence that the
proposed query rewriting approach is scalable and efficient for very large models. Overall, these results
illustrate that automated query rewriting has performance benefits both for small and large models.

4.4 Translating EVL to VIATRA
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Figure 20: EVL to Viatramapping architecture.

Viatra supports scalable querying through incremental engine. We proposed an approach16 [12] for
mapping certain expensive EOL expressions to Viatra graph patterns as shown in Figure 20. Through
the information extracted through static analysis, we detect first-order operations in an EOL/EVL program
and then translate them to equivalent Viatra patterns at compile time. So when such a translated Viatra
pattern is to be executed, a runViatra method provided by the EMC EMF Viatra’s extension is executed. It
sends the textual pattern to Viatra Engine Bridge which generates query specificaiton for Viatra Engine.
Viatra Engine executes the query specification provided and return the found matches to EVL which are
combined with the other results (unoptimised expressions) evaluated by EVL. This work is in collaboration
with Benedek Horváth (ESR 13) at IncQuery Labs Budapest, Hungary.

4.4.1 Evaluation

In order to measure the query execution time and memory use of the proposed approach we adopted three
validation constraints from the FindBugs validation suite [39] and evaluated them on the Java MoDisco
EMF model of the Eclipse source code [39]. We compared the incremental (RETE) and local search (LS)
engines of Viatra with the sequential EVL engine. In the query evaluation phase, the models are already
loaded in memory, and the EOL expressions are already translated to VQL. The query rewriting took 9 ms
for all queries. The measurements were conducted on a machine with Windows 10, Intel i7-9750H CPU @
2.60GHz, 32 GB RAM, Java HotSpotTM 64-Bit Server VM 13.0.1+9 (with 16 GB max heap size).

Model size

Query engine

RETE LS with
base index

LS without
base index Sequential EVL

100K 0.937 1.346 03:25.720 03:25.985
200K 1.766 2.488 14:43.912 15:55.617
500K 4.315 6.056 93:00.186 106:30.364

Table 8: Execution time of the engines (in min:sec.milliseconds).

As execution-times shows, the RETE engine provides the shortest execution time, due to the incremental
caching of pattern matches. The local search engine with base index gives similar results, due to the caching
of the base relations and objects in the model. The LS engine without base index and the sequential EVL
engine were several magnitudes slower compared to the previous engines.

The largest speed-up is 1481x between the RETE and the sequential EVL engine, in the case of models
with 500k elements.

16https://github.com/lowcomote/evl-viatra-prototype
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Model size

Query engine

RETE LS with
base index

LS without
base index Sequential EVL

100K 94 92 88 49
200K 141 133 126 80
500K 284 268 243 183

Table 9: Memory use of the engines (in MB).

Comparing the memory use of the engines in memory-use, we can observe that the RETE engine
consumes the most memory, while sequential EVL the least. Interestingly, the local search engine without
base index consumes almost the same amount of memory as the engine with base index. This is because
the base index is initialized in both cases, but in the first case the engine does not retrieve any object from
the index.

4.5 Selective Traceability of Model-to-Model Transformations
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Figure 21: An overview of the proposed approach.

4.5.1 Motivating Example

In this section, we discuss our proposed approach for the efficient execution of rule-based model transfor-
mation programs using static analysis and automatic program rewriting. The main goal of this approach is
to reduce the execution time and memory footprint of transformations without changing or compromising
any of the language semantics. This approach is illustrated in Figure 21.

Let us consider the example of a partial (for conciseness) OO2DB transformation. It describes the
transformation of a model conforming to an object-oriented schema metamodel, as shown in Figure 22,
into a model conforming to a relational database metamodel as shown in Figure 23. This transformation
has been adapted from [40] and an excerpt is shown in Listing 13. The transformation contains four
transformation rules:
• Class2Table to transform all the Classes in the object oriented model to Tables in the database model.
• SingleValuedAttribute2Column to transform single-valued Attributes to Columns in the database

model.
• MultiValuedAttribute2Table to transform multi-valued Attributes to Tables and foreign key Columns

in the database model.
• Reference2ForeignKey to transform References in the object oriented model to foreign key Columns in

the database model.
The size of the trace of the transformation (as shown in Listing 13), which relates source to target

elements in the current implementation of the ETL execution engine will be O+M+N, if we evaluate it over
a source model containing O classes, M number attributes and N references.

However, at a closer look, in this OO2DB transformation, only trace links created by the rule Class2Table
are needed by the other rules. The remaining trace links, created by the three other rules (SingleValuedAt-
tribute2Column, MultiValuedAttribute2Table & Reference2ForeignKey) are not used anywhere in the transfor-
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Model

contents: Classifier[*]

ClassifierFeature

owner: Class

visibility: VisibilityEnum

Reference

type: Class

NamedElement

name: String

Datatype

StructuralFeature

Attribute

isMany: EBoolean

type: Datatype Class

extends: Class

extendedBy: Class[*]

features: Feature[*]

isAbstract: EBoolean

Figure 22: Object-Oriented Metamodel.

Table

columns: Column [*]

primaryKeys: Column [*]

Column

table : Table

type: EString

ForeignKey

parent: Column 

child: Column 

DatabaseElement

database: Database

Database

contents: DatabaseElement [*]
NamedElement

name: String

Figure 23: Database Metamodel.

mation and therefore establishing and keeping them in memory is wasteful. This would reduce the size of
transformation trace to O.

4.5.2 Selective Traceability Approach

The proposed approach contains four main components, with a source metamodel, a source model, a target
metamodel and a transformation being its inputs. The Static Analyser 1O component is given the model-
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to-model transformation and the source and the target metamodel(s), extracting the type information and
yielding a type-resolved abstract syntax tree (AST). Then, using the Dependency Graph Generator 2O, we
extract the dependencies between the different transformation rules in the transformation: the dependency
graph uses the type-resolved AST to populate these dependencies. Following this, we have a Selective
Tracer to selectively create hash map caches to store the result of source target key-value pairs generated
by corresponding operations and use them as a minimal transformation trace. In the next step, we pass
this dependency graph (see Algorithm 6)to the Rewriter 3O (see Algorithm 7), where the transformation
is rewritten i. e. the transformation rules are converted to the corresponding operations to optimise the
resolution of elements by other rules. Finally, we pass the rewritten optimised transformation to the ETL
Engine 4O for execution. ETL Engine is the default engine already provided by Epsilon. We extended the
default engine to provide the resolution of operation calls to their corresponding user defined methods
mapping provided by the static analyser.

Listing 13: Object-oriented 2 Database Transformation.
1 model Source driver EMF {
2 nsuri="oo"
3 };
4

5 model Target driver EMF {
6 nsuri="db"
7 };
8

9 pre {
10 var db : new Target!Database;
11 }
12 rule Class2Table
13 transform c : Source!Class
14 to t : Target!Table{
15 t.name = c.name;
16 t.database = db;
17 }
18

19 // Transforms a single-valued attribute
20 // to a column
21 rule SingleValuedAttribute2Column
22 transform a : Source!Attribute
23 to c : Target!Column {
24 guard : not a.isMany
25 c.name = a.name;
26 c.table = a.owner.equivalent();
27 }
28

29 // Transforms a multi-valued attribute
30 // to a table where its values are
31 // stored and a foreign key
32 rule MultiValuedAttribute2Table
33 transform a : Source!Attribute
34 to t : Target!Table,
35 fkCol : Target!Column {
36

37 guard : a.isMany
38 fkCol.table = a.owner.equivalent();
39 t.database = db;
40 }
41

42 // Transforms a reference into
43 // a foreign key
44 rule Reference2ForeignKey
45 transform r : Source!Reference
46 to fkCol : Target!Column {
47

48 fkCol.table = r.type.equivalent();
49

50 }

4.5.3 Evaluation

We evaluate the proposed approach against the default ETL execution engine to measure its benefits in terms
of execution time & memory footprint. First, we perform a comparison of the proposed approach with the
default ETL engine. Second, we compare the proposed optimisation approach with other state-of-the-art
languages for M2M transformation.

The experiment referred to as “ETL” evaluates running the transformation using naive ETL without
any optimisations. The “Optimised ETL” one uses our optimisation/rewriting strategy. We also compare
our results with two other widely-used model-to-model transformation languages, ATL and YAMTL [41],
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Algorithm 6 Algorithm for extracting dependency graph.

1: procedure extractDependencyGraph(a)
2: Let DG = Dependency graph
3: Let a = Transformation program
4: for each rule in a do
5: add rule as a vertex in DG
6: for all rule=rules in a do
7: for all element =elements in body of rule do
8: if element is an OperationCallExpression then
9: if element.name = ”equivalent” or ”equivalents” then

10: type = resolvedType of element.target
11: for all r=rules in a do
12: if r is not abstract & (source parameter of rś type = type or is supertype of type)

then
13: add r to rules
14: create an edge(s) in DG from rule to rules
15: replace element with the corresponding operation call of rule.
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to position our work in the broader context of M2M langauges. For the ATL and YAMTL evaluation, we
rewrote the same transformation in ATL and YAMTL and we report on the execution time and memory
footprint.

The results of the execution time of the naive ETL vs Optimised ETL are visualised in Figure 24. We
can observe that overall ETL’s execution time is significantly improved in Optimised ETL version. This
is because of the optimisations provided by static analysis and program rewriting to avoid operation call
resolutions at runtime and also because of efficient resolution of equivalents before the execution.

The memory use for the naive ETL and optimised ETL can be seen in Figure 25, where we can observe that
the Optimised ETL consumes less memory compared to ETL due to the reduced (selective) transformation
trace provided by the selective traceability mechanism.
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Figure 26: Execution Time Comparison.
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Algorithm 7 Algorithm for rewriting the transformation.

1: procedure rewrite(a)
Require: DG = Dependency graph

2: Let a = Transformation program
3: for all rule=rules in a do
4: Map guard block of rule to an operation op gd
5: op gd.name = operation guard ruleName
6: Body of op gd <- Body of guard block
7: Param of op gd <- Source parameter of rule
8: Add op gd to the ETL module
9: Map rule to an operation op rule

10: op rule.name = operation rule ruleName
11: Body of op rule <- Body of rule
12: Context of op rule <- Source parameter of rule
13: if guardBlock exists then
14: Call op gd as an if statement
15: Instantiate target element(s)
16: Add above as statement(s) to the body of op rule
17: Call super rules of rule
18: Return target element(s) as a Collection
19: Add above as a return statement in op rule
20: Set the type of target element of rule as a return type of op rule.
21: If mulitple targets set return type as Collection
22: if rule is traceable according to DG then
23: declare a HashMap (cache ruleName) variable in the pre block
24: add target elements for the corresponding source element in the cache ruleName
25: add an if statement to search in cache ruleName if a key with source element exists
26: Add op rule to the ETL module
27: for all rule in transformation rules do
28: if rule is not lazy or abstract then
29: Iterate through all instances of source parameter of rule
30: Call the corresponding operations of rule in for loop
31: Set the iterating variable as a context of operation
32: Add the for statements in the pre block
33: Clear all transformation rules from ETL module

We present the results of execution time and memory consumption of our proposed approach in
comparison with ATL and YAMTL, respectively (depicted in Figure 26 and 27). We can clearly see YAMTL
executes faster than the others, because YAMTL is compiled to Java, while ETL and ATL are interpreted.

4.6 Model-to-Model Transformation Chain Optimisation

Model transformation is a key concept in the field of model-driven engineering. To scale up the model
transformation tasks in a cloud-based low-code platform, reusing and composing smaller model transfor-
mations enables a complex transformation to be executed sequentially and optimally. To achieve reusing
and composition of smaller transformations, we need to identify all the model transformation chains pos-
sible in the repository/folder to transform the source model to the target model. Then, with the help of
static analysis, the total structural features involved in a model transformation are calculated and the chain
with minimum structural features is considered to be the best chain. We propose an approach as shown
in the Figure 21 for the optimisation of model transformation chains that leverages static analysis of the
model-to-model transformation and performs analysis of transformation chain and rule to execute auto-
mated program rewriting behind the scenes. The main idea is to remove those transformation rules and
bindings which generate the intermediate model elements that are not required for generating the elements
of the final target model. We expect to improve the performance by reducing the execution time required to
execute the selected transformation chain. The optimization of the execution of the model transformation
chain helps in achieving the scalable solution that manages several work flows originating from hetero-
geneous lowcode platforms. This work is done in collaboration with Apurvanand Sahay (ESR 15) and is
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explained in detail in Deliverable 5.4.

Transformation Chaining Processor

Produced output

Chain Optimizer Chain selector

Available chains

User request

Input model

Required 
metamodel in 

OUT

Selected chain

conform to

Model Repository

Chain discoverer

Transformation 
Optimizer

Static Analyzer

Chain ExecutorOutput model

1

2

3

4

5

Figure 28: Model-to-model transformation chain optimisation.

4.7 Related Work

This section summarises existing work within the scope of this deliverable in three main categories. First,
it lists existing tools in MDE that provide static analysis facilities; second, it discusses model query optimi-
sation strategies; and finally, it discusses model-to-model transformation optimisation.

AnATLyzer [42] is a tool for static analysis of ATLAS Transformation Language (ATL) transformations
that provides type checking, problem reporting and quick fixes. AnATLyzer checks that the transformation
is correctly typed with respect to the source metamodel. It ensures that the generated target model conforms
to the target metamodel. It also identifies any conflicting or missing rules. AnATLyzer is limited to static
analysis of ATL model transformations only.

In [43], Born et al. extended Henshin, a rule-based model transformation language adapting graph
transformation concepts based on the EMF. This extension computes all potential conflicts and dependencies
of a set of rules and report them in the form of critical pairs. Each critical pair consists of the respective pair
of rules, the kind of potential conflict or dependency found, and a minimal instance model illustrating the
conflict or dependency.

Another tool [44] provides a static analysis facility for graph transformations. This work is based on
Constraint Satisfaction Programming (CSP), containing a type checker for the Viatra2 framework. As this
type checker is based on CSP, it is not guaranteed to find all the errors in a single run using static analysis.
This tool is limited to static analysis of Viatra2 transformations. Static analysis of OCL is discussed in [45],
where a pseudo-type OCLSelf is introduced to infer the type of built-in operations such as oclAsSet() and
oclType(). Willink [46] introduced safe navigation operators in OCL. This operator solves the problem of
declaring non-null objects and null-free collections and enables OCL navigation to be fully checked for
null-safety.

In [47], the A2L compiler is introduced for parallel execution of ATL transformations. It uses static
analysis through ATLyzer (discussed above), to generate efficient code at the transformation level.

Gremlin-ATL is another approach presented in [48]. It is a model-to-model transformation framework
that translates ATL transformations into Gremlin, a query language supported by several NoSQL databases.

Another model-to-model transformation language, YAMTL, was introduced in [49]. YAMTL provides
an efficient engine to transform EMF-based models with transformations defined in the internal DSL
of Xtend. Support for incremental transformations was also added in [50] using the forward change
propagation mechanism.

Several approaches and languages are available for incremental model-to-model transformations, such
as the Tefkat tool, by Hearnden et al. in [51]. Here, changes to the source models are directly mapped to their
effects on transformation execution, allowing modifications to target models to be computed efficiently.
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5 Conclusion

In this report, we have discussed how scalability is a challenging aspect in a low-code platform and
proposed approaches for intelligent model partitioning and query optimisation using static analysis. We
described the architecture of static analyser for EOL. We added new features to the EOL engine to get more
static information such as return type compatibility, type compatibility of context and parameters from
model management programs at compile time. As the static analyser has been implemented for EOL, we
plan to extend this facility to other specific languages of the Epsilon framework like the Epsilon Validation
Language (EVL).

First, in Section 2, we have proposed an approach for the efficient loading of serializable models from the
Neo4EMF database. We proposed an extension of NeoEMF for dynamically loading objects independently
of EMF artifacts. The approach was demonstrated on the social network case study of TTC 2018. As future
work, we plan to integrate this approach to the other research lines that were introduced in the report.

Then, in Section 3, we have introduced an approach for partial loading of file-based and repository-
based models based on information extracted through static analysis of model management programs that
access them. We have evaluated our approach against large models from the FindBugs and Grabats test
suites. The results demonstrate that program-aware partial loading can significantly reduce the time and
memory required to run model management programs against file-based and repository-based models
when only a subset of the model’s elements is accessed by the program, without otherwise affecting the
behaviour or the output of the program.

As future work, we plan to investigate how the results of static analysis can also improve memory
footprint when the execution engine unloads obsolete parts of the model (i. e. parts that have already been
processed and are guaranteed not to be accessed again) in memory instead of keeping them for the duration
of the execution of the program. In this way, resources will be freed that will allow management programs
to accommodate even larger models.

Then in Section 4, we presented how in a low-code platform, models stored in various back-end formats,
often need to be accessed concurrently in a model management program. It is essential to have a query
optimization strategy for this scenario so that large-scale models can be queried efficiently. We have shown
that static analysis and query rewriting can deliver benefits both in terms of memory footprint and execution
time of complex queries by experimental results.

According to the proposed architecture of query optimisation, we use a static analyser to extract the
information from the model management program. The type-resolved abstract syntax graph is then passed
through different query translators/rewriters. We provided an approach for EOL to SQL query translation,
optimisation of queries over EMF models by custom indices, and translation of EOL expression to Viatra
graph patterns. We also proposed an approach for selective traceability to efficiently execute rule-based
model-to-model transformation programs. We also presented the results of the experiments conducted to
compare the proposed approaches with state of the art. The results demonstrate that static analysis based
optimisation can significantly reduce the execution time and memory footprint.
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