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Project Abstract

Low-code development platforms (LCDP) are software development platforms on the Cloud, provided
through a Platform-as-a-Service model, which allows users to build completely operational applications by
interacting through dynamic graphical user interfaces, visual diagrams and declarative languages. They
address the need of non-programmers to develop personalised software and focus on their domain expertise
instead of implementation requirements.

Lowcomote will train a generation of experts that will upgrade the current trend of LCDPs to a new
paradigm, Low-code Engineering Platforms (LCEPs). LCEPs will be open, allowing to the integration of
heterogeneous engineering tools, interoperable, allowing for cross-platform engineering, scalable, support-
ing very large engineering models and social networks of developers, smart, simplifying the development
for citizen developers by machine learning and recommendation techniques. This will be achieved by
injecting in LCDPs the theoretical and technical framework defined by recent research in Model Driven
Engineering (MDE), augmented with Cloud Computing and Machine Learning techniques. This is possible
today thanks to recent breakthroughs in the scalability of MDE performed in the EC FP7 research project
MONDO, led by Lowcomote partners.

The 48-month Lowcomote project will train the first European generation of skilled professionals in
LCEPs. The 15 future scientists will benefit from an original training and research programme merging
competencies and knowledge from 5 highly recognised academic institutions and 9 large and small indus-
tries of several domains. Co-supervision from both sectors is a promising process to facilitate the agility of
our future professionals between the academic and industrial worlds.

Deliverable Abstract

Low-Code Development Platforms (LCDPs) have emerged as the next-generation Cloud-based devel-
opment platforms that utilize recent theoretical and practical advancements of Model-Driven Engineering.
On these platforms, non-technical users build models of their applications using visual diagrams, domain-
specific editors and graphical workflows and can automatically generate source code to realize them as fully
operational applications. Therefore, LCDPs help in speeding up the development process and shortening
the time-to-market and time-to-product cycles.

Since LCDPs are cloud-based platforms deployed in a Platform-as-a-Service (PaaS) model, they have
specific needs. They need to complete complex operations with low response time to satisfy users’ needs
with efficiency. Although there exist several technologies which follow a single execution strategy for
model-management operations, there is no technology that would automatically choose the most efficient
one, even by the combination of several others, for a given goal. Besides, to achieve responsive low-
code platforms, we need scalable reactive model transformations that can react quickly to events which
occur on the platform. Moreover, in LCDPs, users can create complex model-management workflows that
should be executed in the most efficient way possible while maintaining some properties and constraints.
Specifications of complex workflows within and across multiple platforms are elaborated in understanding
the process builder mechanism in an LCDP. This raises a broad research goal about using customized
modelling constructs so that a citizen developer can use the constructs to specify the desired workflows at
a high level of abstraction.

In this deliverable, we propose ways to address the aforementioned challenges. We present a distributed
model transformation engine on Spark, a scalable framework for developing distributed applications. We
provide an analysis of several solutions for evaluating OCL expressions, conducting a distributed model
transformation and implementing a transformation engine. After that, we propose a benchmark framework
to find the best parameterization of multi-parameter Spark applications according to a goal metrics func-
tion. To improve the quality of industrial systems engineering models, we propose a cloud-based model
transformation, validation and verification framework that takes benefit of the elastic scalability of cloud
resources to enhance the performance of resource-intensive formal verification tasks. Finally, we propose
a workflow for efficiently executing model transformation composition scenarios across several platforms.
The identification of model transformation chains is made by analyzing the transformation language in the
(meta)model repository. An optimal chain is selected based on different objectives, such as coverage and
complexity. Lastly, an optimal transformation chain is deduced by finding out the exact elements that are
needed to be transformed across the chain.
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1 Introduction

Model-Driven Engineering (MDE) [1] provides a method to develop software using domain models at a
higher level of abstraction. The Object Management Group [2] proposed the Model Driven Architecture
(MDA), which is part of MDE. The MDA-based software starts by building platform-independent models,
which are transformed into one or more platform-specific models, which can further be transformed to
code for specific software. Model transformation is key in determining the interoperability [3] with other
software and the reusability [4] of the artefacts within or outside a particular software scenario.

Model transformation creates new target models from source models, which conform to target and
source metamodels. During this process, a trace model is created that tracks which target model elements
were created from which source model elements. Thereby enabling the incremental update of the target
model according to the changes in the source model or back-propagating the target model to the source
model if we want to trace the analysis results in the target model to their origins in the source model.
Researchers have implemented several model transformation engines in the past (e. g., ETL [5], ATL [6],
Viatra [7]), each implementing a different approach to achieve this goal.

In recent years, Low-Code Development Platforms (LCDP) have emerged, allowing citizen developers
with no or little prior programming experience to design and implement full-fledged applications. LCDPs
adopt the recent theoretical and practical advancements of Model-Driven Engineering. On these platforms,
citizen developers [8] build software models by refining their operation on diagrams with different levels of
abstraction, using domain-specific editors. Moreover, they use model transformations to derive platform-
specific source code, tests, or configuration artefacts from the models to realize their systems as fully
operational applications [9].

LCDPs allow citizen developers to design and implement complex systems that can process a large
amount of data. Let’s consider an application which processes content from a social media platform, where
millions of comments, videos and photos are posted every day. To process and transform such a large
amount of content efficiently, we need many computational resources (CPU, memory, disk, network) and
a scalable, distributed platform.

Cloud computing provides easy access to a large number of computational resources. Increasing
the number of available resources enables elastic, on-demand, horizontal and vertical scalability, i. e., the
application remains scalable if the number of dedicated resources, or the size of input data, increases.
In other words, the performance will not be impacted if the number of computational units or the size
of the input data increases. The only challenge then is to build a scalable program. MapReduce, a data-
distributed-based framework designed for big data processing, offers a highly scalable and parallel solution.
Also, other frameworks, such as Spark [10] are very popular in the cloud [11].

To push the boundaries of state-of-the-art (SOTA) research further and to take benefit of such software
platforms as scalable solutions for model management operations, we propose SparkTE, a multi-paradigm
distributed transformation engine (Section 2) with a benchmark framework (Section 3) to find the best
parametrization of multi-parameter applications similar to SparkTE. Besides multi-paradigm model trans-
formations, the cloud can also be used to improve the quality of software and system models. Therefore, in
Section 4, we introduce a cloud-based model transformation, validation and verification workflow to check
the correctness of industrial systems engineering models.

In a complex data-processing and model manipulations pipeline usually, many transformations are
chained after each other. However, these transformation chains are often more complex than they should
be, i. e., contain model transformations that are unnecessary from the final result’s perspective. Therefore, in
order to help LCDP users’ work and improve the SOTA research, in Section 5, we introduce novel solutions
for model transformation composition, chain identification, selection and optimization.

Finally, we conclude the report and present future work in Section 6.

Contributions

In this report, we present the following contributions:

1. SparkTE, a multi-parameter model transformation engine on Spark, proposes a comparison of strate-
gies for evaluating expressions and conducting model transformations based on different semantics,

2. a framework to benchmark multi-parameter applications on a Spark cluster,
3. a scalable, cloud-based model transformation, validation and verification workflow for industrial

systems engineering models,
4. approaches to create a model transformation composition engine in the Epsilon Transformation

Language (ETL). The approaches are related to identifying and selecting the appropriate chain based
on multiple objective criteria. Also, optimization of the transformation chain execution is done by
discarding those elements in the intermediate transformation which are not used in the target model.
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2 Cloud-based Scalable Model Management Operations

In this section, we propose SparkTE, a model transformation engine based on Spark1, proposing different
implementations at different levels of the engine. Proposing a unified solution nesting several imple-
mentations and strategies allows experiments to compare different semantics and strategies of execution.
It also includes an attempt to compare engineering choices that are part of the design space of model
transformation engine definitions. Most of these works have been published in [12] and [13].

2.1 Research objectives

A model transformation (MT) is defined as a set of rules and is executed in an engine. The left-hand side of
the rule (LHS) is an expression describing what part of the model must be matched, while the right-hand
side (RHS) expresses its related output. Evaluating these expressions results in running queries on the input
model. The LHS is an expression evaluated into a boolean value, while the RHS constructs output elements
from the matched elements and the input model. In a larger scope, rules are executed in an engine. Each
research effort in developing a model management engine exploits a single strategy for optimizing model
management operations [12]. Typically, the strategy is applied in an additional implementation layer for
the model management language, e. g., an interpreter or compiler.

We say that a transformation engine performs multi-strategy model management if it automatically con-
siders different strategies in order to manipulate models efficiently. To the best of our knowledge, such an
approach does not exist in the literature yet.

In this section, we exemplify the multi-strategy approach by implementing an OCL expression in
different ways, using different strategies of parallelism. Secondly, we propose a full model transformation
engine based on formal semantics: one is designed for reasoning, while the other increases parallelism
opportunities. Finally, we discuss engineering decisions to implement such an engine.

Our prototype is built on top of Spark, an engine designed for big data processing in the Cloud. The
goal of this section is not to provide the most efficient solution for solving the given problem. Instead, it
aims at illustrating the diversity of solutions, each having its own advantages depending on the use cases.

2.2 Motivating example

Social network vendors often provide specific development platforms used by developers to build apps
that extend the functionality of the social network. Some networks are associated with marketplaces where
developers can publish such apps, and end-users can buy them. Development platforms typically include
APIs that allow analyzing and updating the social network graph.

As a running example for this section, we consider a scenario where a vendor adds a Low-Code
Development Platform (LCDP) to allow end-users (also called citizen developers in the LCDP jargon) to
implement their own apps. Such LCDP could include a WYSIWYG editor for the app user interface and a
visual workflow for the behavioural part. In particular, the LCDPs would need to provide mechanisms, at
the highest possible level of abstraction, to define expressions to update the social graph.

In Figure 1, we show the simple metamodel for the social graph that we will use in the chapter. The
metamodel has been originally proposed at the Transformation Tool Contest (TTC) 2018 [14] and used
to express benchmarks for model query and transformation tools. In this metamodel, two main entities
belong to aSocialNetwork. First, thePosts and theComments that represent theSubmissions, and
second, the Users. Each Comment is written by a User, and is necessarily attached to a Submission
(either a Post or another Comment). Besides commenting, the Users can also like Submissions.

The TTC case states that the impact of a post depends on how much it is debated. As evaluation, a
score function is applied to each Post. The execution of this scoring function represents our use case
for evaluating the different implementations of a given expression. To evaluate the different semantics for
executing a model transformation, we use a simple identity transformation on the model.

2.3 Architecture and approach

2.3.1 Expression evaluation on cloud architectures

In addition to parallel features of Spark on data structures, called Resilient Distributed Datasets (RDDs),
the Scala implementation of Spark proposes several APIs, including a MapReduce-style one, an API for
manipulating graphs (GraphX [15] that embeds the possibility to define Pregel programs [16]), and a SQL
interface to query data structures. Because the framework proposes different parallel execution strategies,
we only focused on parallel approaches to illustrate the need for a multi-strategy approach. Comparing
solutions that include laziness and incrementality aspects is part of our future work. In our implementation
example, we use GraphX in addition to its provided Pregel function and MapReduce features. We represent
instances of SocialNetwork as a GraphX graph where each vertex is a couple of a unique identifier

1https://spark.apache.org/
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Figure 1: The metamodel of a social network (TTC 2018).

and an instance of either a User or a Submission (Comment or Post). Edges represent the links of
elements of a model conforming the metamodel presented in Figure 1, labeled by a String name. We
keep exactly the same labels from the metamodel for [0..1] or [1..1] relations, but we use singular names for
[0..∗] relations (e. g., one edge “like” for each element of the “likes” relationship). For the rest of this section,
we consider sn a GraphX representation of a SocialNetwork.

Considering that there exists an implementation for the function score, that will be detailed later in
this section, the OCL query topPosts of Listing 1 can be rewritten using Spark, as presented in Listing 2.

1 query topPosts = SN!Post.allInstances()
2 →sortedBy(e | -e.score)
3 →subSequence(1, 3);
4

5 helper context SN!Submission def: allComments =
6 self.comments→union(self.comments
7 →collect(e | e.allComments)
8 →flatten() );
9

10 helper context SN!Post def: countLikes =
11 self.allComments
12 →collect(e| e.likedBy.size())
13 →sum();
14

15 helper context SN!Post def : score =
16 10*self.allComments→size() + self.countLikes;

Listing 1: An OCL query for the first task of the TTC 2018.

1 sn.vertices.filter(v => v.isInstanceOf[Post])
2 .sortBy(score(_._2), ascending=false)
3 .collect.take(3)

Listing 2: Spark implementation of a query from TTC 2018.

First, the SN!Post.allInstances() statement of the OCL specification is translated into the
application of a filtering function on the vertices of the graph sn (line 1). Sorting with a decreasing order
is then applied to the score values (computed by the score function) of each vertex. The projection _._2
returns the second element of the vertex values, that is an instance of Post, while _._1 would have
returned its identifier within the graph. At the end of line 2, the current structure is still an RDD. Because
of the small number of values we aim at finally obtaining, the structure is converted into a sequential array
of values (function collect), from which we get the first three values. We can notice a similar structure
between the Spark and OCL queries. Hence, the global query can almost be directly translated from one
language to the other.
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However, the scoring function can be implemented in many different ways with many different strate-
gies. We illustrate this through three implementations: direct-naive, and highly-parallel, pregel.

The first implementation, namely direct-naive directly follows the OCL helpers from Listing 1. It uses
parallelism coupled with the lazy evaluation provided by Spark. Each helper is written using Spark-
equivalent functions.

The second implementation with MapReduce proposes a solution with a higher level of parallelism,
namely highly-parallel. The purpose of this solution is to process as many operations in parallel for the first
time as possible and then go through the graph to reduce these values. The first step counts the number
of direct sub-comments and the number of likes for each element of the model using a map operation.
Then a graph-traversal operation calculates the total number of belonging comments and likes for a given
post. We do not expect to gain performance with this approach because the operations are not costly
enough. However, having a highly parallel approach largely increases the scalability of the program. One
disadvantage of this implementation is its non-reactive aspect. Indeed, without an additional mechanism,
all the initial map functions must be re-executed in case of a change in the model.

The third implementation, namely pregel, is a Pregel-based one. The main idea of this solution is,
starting from a Post, to count the number of comments and the number of likes for these comments by
propagating messages through the edges of the graph by using Pregel. The propagation is processed using
the Pregel support of GraphX, which works as follows. At each iteration, a function mergeMsg accumulates
the incoming messages into a single value. The messages are stored in an iterable structure from the
previous iteration (with an initial message defined for the first iteration). The accumulated value is used
by vprog with the previous vertex vn to generate the new vertex data vn+1. In addition, to this new vertex
data, messages are generated by sendMsg and sent to vertices through edges for the next iteration. The
program stops when no message is produced for the next iteration. In our implementation, messages are
tuples of two values. The first is a boolean, specifying if the sending vertex has been reached during the
pregel execution. The second one aims at making more precise what value must be incremented (either
the number of comments (false), or likes (true)). The initial step of the execution initializes the graph
creating a tuple from the vertex values with a boolean specifying if the vertex has been reached. At the end
of the execution, the score of a post is calculated using the accumulator values.

Comparison of solutions First, the complexity of the solutions direct-naive and pregel can be compared.
On the one hand, the complexity in time of the direct implementation of the OCL query, can be given as
the sum of the complexity of allComments and countLikes. Considering n the number of nodes,
these two complexities are defined as follows. First, allComments is a depth-first search of complexity
O(n + m) with m the number of "comment" edges (i. e., the depth of belonging comments). Second,
countLikes is composed by a depth-first search, and the map of a function whose complexity is O(n).
Then, the complexity of the mapping part is given by O(n2). Since the complexity of the sum operation
is negligible, we do not consider it in the calculation of the global complexity. By summing these values,
we obtain a complexity of O(n2 + m) for the direct implementation of the scoring function. On the other
hand, the Pregel implementation complexity is bounded by O(n2) in the case of all comments belonging to
the same post. Naturally, the second solution will be preferred since its complexity is lower. However, if
the model has a small depth of belonging comments (i. e., a small value for m), the two solutions are not
significantly different.

The Pregel solution has, nonetheless, an important weakness. Indeed, for optimization reasons, vprog
is only applied to vertices that have received messages from the previous step. Then, considering the case
where the comments are all commented once, the vprog function will be applied to only one vertex. Hence,
the parallelism level strongly depends on the number of siblings in each comment. With Pregel, only active
vertices, i. e., vertices which received a message from the previous iteration, compute the vprog function.
Thus, the number of operations concurrently executed in Pregel varies from the less to the most commented
and liked element. On the contrary, the highly parallel implementation executes the processing operations
on every element of the model. In the latter, the parallelism level of graph-traversal has the same limitation
as the Pregel implementation but always performs a less complex operation (i. e., a reduction as a sum of
integer values).

The three parallel approaches mentioned above solve the same problem, but their efficiency depends
on external parameters. We have illustrated how the topology of the model may impact the complexity, but
also how the level of parallelism may become important, and what impact the cost of parallel operations
may have. Thus, choosing the right paradigms can have a huge impact on performance.

Mix of solutions As mentioned at the beginning of the section, our proposed solutions do not claim
to be the most efficient ones. They are based on three parallelism strategies to illustrate the variability of
possible solutions for a given problem. Considering all the presented strategies, a more robust solution
could include reactive aspects. For this particular example, mixing incrementality and parallelism would
avoid useless calculations when the score of a single post has changed. For instance, the independent
scores could be calculated once using parallelism, and when a change occurs, use incrementality to avoid

7



the recomputation of unchanged elements. Considering a possible deletion of a part of the model (e. g.,
deletion of a user and then of all his posts and comments), laziness could be incorporated into the solution
only to recompute potential new most-debated posts.

Finally, the first two strategies (i. e., direct-naive and highly parallel) adopted a depth-first search strategy
for their traversal functions. The functions are implemented as recursive functions that use functional
patterns implemented in parallel. Nonetheless, it is possible to use a higher level of implementation
for these functions. For instance, the iterative aspect of Pregel totally fits in this case. The different
implementations can be found in a remote directory2.

In the rest of this section, we also conducted experiments on these multi-strategy implementations. To
execute the topPosts query, a multi-strategy engine would compile it to:
• the direct-naive implementation, if the depth of belonging comments is small;
• the highly-parallel solution, if the score computation needs big calculation on the vertices themselves;
• the Pregel solution, if the environment has few resources for parallelism;
• the mix of direct-naive, or the highly-parallel solution, with Pregel features, if several conditions are

respected.

2.3.2 Model transformation semantics

In MDE, model management frameworks propose dedicated languages to transform models, like the Atlan-
Mod Transformation Language [17] (ATL) or the Epsilon Transformation Language [18] (ETL). Good scala-
bility and facilities for formal reasoning are among the intended benefits for users of model-transformation
languages. On the one hand, researchers have proposed transformation engines designed to effectively
perform computationally or memory-intensive transformations [19]. On the other hand, the community
has extensively worked on formal reasoning and verification tools for model transformation languages.
Among these solutions, the CoqTL language [20] allows users to write transformation rules, define contracts
and certify the transformation against them within the Coq proof assistant [21].

In this section, we introduce SparkTE, a transformation engine that addresses at the same time distri-
bution and certification. To do so, we propose a refinement of the CoqTL semantics, named Parallelizable
CoqTL, increasing parallelism and distribution opportunities. But Coq specifications are not designed
to be executed. Then we also propose an implementation on top of Spark. We illustrate the increased
performances of our new semantics in Section 2.4.2.

2.3.2.1 CoqTL

The CoqTL language [20] allows users to write transformation rules, define contracts and certify the
transformation against them within the Coq proof assistant [21]. A transformation is written in CoqTL, an
internal DSL for model transformation within the Coq theorem prover. The transformation primitives are
newly-defined keywords (by the notation definition mechanism of Coq), while all expressions are written
in Gallina, the functional language used in Coq. The CoqTL semantics is heavily influenced by ATL [22]
notably in the distinction between a match/instantiate, and an apply function), and its original design
choices focus on simplifying proof development.

The execute function shown in Listing 3 is the entry point of the transformation execution in the
standard CoqTL semantics. First, the allTuples function (line 2) produces all the tuples of elements
that can possibly be matched by the rules. allTuples computes a list of

∑A
a=0 na tuples, with n the

number of elements in the input model, and A the maximum arity of the transformation rules. Then, the
instantiatePattern function (line 3) considers each tuple to find if it matches with any rule, and for
each match, it constructs the corresponding output pattern elements. Internally it iterates on each rule,
executes its guard function and if the result is positive, executes the element creation function for each
output pattern element of that rule. The resulting elements are gathered by the flat map in a single output
list. Finally, the applyPattern (line 4) function is executed on each tuple to create target links. Similarly
to the function instantiatePattern, the function internally iterates on all rules and checks if the rule
matches the given pattern. In a positive case, the element creation functions for that rule are executed and
then the link creation functions. The resulting links are gathered by the flat map in a single output list.

1 Definition execute (tr: Transformation) (sm: SourceModel): TargetModel :=
2 let tuples := allTuples tr sm in
3 let elements := flat_map (instantiatePattern tr sm) tuples in
4 let links := flat_map (applyPattern tr sm) tuples in
5 Build_Model elements links.

Listing 3: Execution definition of MT in CoqTL.

2https://tinyurl.com/yxb86zev
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1 Definition execute (tr: Transformation) (sm: SourceModel) (sm: SourceMetamodel): TargetModel :=
2 let tuples := allTuplesByRule tr sm mm in
3 let (elements, tls) := flat_map (tracePattern tr sm mm) tuples in
4 let links := flat_map (fun sp⇒ applyPatternTraces tr sm sp tls) (allSourcesPattern tls) in
5 Build_Model elements links.

Listing 4: execute function in the Parallelizable CoqTL specification.

2.3.2.2 A new semantic: Parallelizable CoqTL

Parallelizable CoqTL contains three optimizations to the base CoqTL specification:
• to increase parallelization, the algorithm is split into two consecutive phases, instantiate and apply,

that are built on parallelizable functional patterns (flat map);
• to improve load balancing of the instantiate phase, only possibly useful tuples are generated and then

distributed;
• to improve load balancing of the application phase, a set of trace links is produced by the instantiate

phase and the apply phase iterates only on those trace links.
Note that similar optimizations (among others) are already implemented in well-known transformation

engines, like ATL [22] or ETL [23]. Differently from previous work, we formalize the optimizations,
interactively prove that they do not affect the transformation output and assess their impact on distributed
execution. The entry point of Parallelizable CoqTL is presented in Listing 4.

Optimization 1: Two phases In standard CoqTL, the applyPattern function performs all the com-
putations of the links generated by a matched input pattern by the rule that matches it. However, the
computation of the links of a rule is not independent of the computation of other rules. This dependency
is caused by the resolve function that searches for the output of another rule in order to set the target of
the created link. In general, because of this dependency, two executions of the apply function can not be
run in parallel without replicating some matching and instantiation within each call to resolve.

We refactor the computation to split it into two phases, similarly to ATL [24]. This is visible in Listing 4.
In the first phase (lines 3), we compute the tuples, and we run the matching and instantiation by a new
function named tracePattern. The first phase produces the list of generated elements and trace links
connecting them to their corresponding source patterns. Differently from Listing 3, here the second phase
(line 4) can only start computing output links after the full first phase has finished computing the trace
links since the flat map expects the tls structure as a parameter.

In Listing 4, every execution oftracePattern can be run in parallel. When the first phase is over, every
execution of applyPatternTraces can be run in parallel, too, since the calls to resolve can be computed
immediately on the trace-link structure. This greatly improves the parallelization of the algorithm.

Optimization 2: Tuple generation by rule Matching a pattern to a rule happens in two consecutive
steps. First, the types of the pattern are checked against the types expected by the rule. Then, if the types
are correct, a guard condition is evaluated. The type checking is very fast; hence it acts as the first filtering.
Instead, the evaluation of the guard condition can potentially be very long or navigate large parts of the
model. So it is executed only for the few tuples that pass the type check.

Since the tuples that require an evaluation of the guard condition are a small subset of all the possible
tuples, arbitrarily distributing all tuples among the cores can potentially lead to imbalanced partitions.
In particular, it would not be uncommon to have partitions that do not require any guard evaluation, as
opposed to partitions that need to evaluate several expensive guards. In such cases, idle workers would
wait for the synchronization barrier to start new computations. The imbalance impacts the scalability of
the program.

To limit the imbalance in the initial sequential tuple generation phase, we generate only tuples whose
type matches at least one rule of the transformation. This is shown in Listing 4 by the use of the
allTuplesByRule for tuple generation (line 2). allTuplesByRule iterates on rules and produces only
combinations of elements of the types listed in the rule input pattern. This improves the load balancing of
the first phase since all produced tuples require a guard evaluation.

Optimization 3: Apply iterates on traces Executing the apply phase on the tuples generated by
allTuplesByRule would cause an imbalance among partitions, similar to the one discussed in Opti-
mization 2. Indeed, among these tuples, only very few have passed the guard condition in the first step.
A partitioning of allTuplesByRule would produce partitions that do not require any computation, to-
gether with partitions that need to evaluate several expensive link creation functions. In this optimization,
we make the apply phase iterate only over the source patterns that passed the guard evaluation in the in-
stantiate phase. We retrieve these patterns by collecting them from the list of trace links. This is performed
by the function allSourcePatterns at line 4 of Listing 4.
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Optimization Specification size (LOC) Certificate size (LOC) Proof effort (man-days)

twoPhases 69 484 10

byRule 42 487 7

iterateTraces 69 520 4

Table 1: Sizes of new specifications and certification proofs for each optimization with proof effort.

Proof Besides the executable functional specification, CoqTL is also described by an axiomatic speci-
fication. Certifying against the axiomatic specification involves providing 10 types, 27 semantics functions
and proving 15 theorems. The specification is fully illustrated in [13], together with a proof engine that can
execute the certification against the axiomatic one.

We prove that engines implementing Parallelizable CoqTL certify the axiomatic specification, too. For
this step, we naturally reuse the types, functions and certification proofs of the base executable specification
that are not impacted by the optimization. Each optimization is proved independently. Table 1 shows the
size (in lines of code, LOC) of new specifications and proofs required for describing and certifying each
optimization, plus the human effort (in man-days) to complete the proofs. The refined specifications and
their proofs are available online3.

2.3.2.3 SparkTE

Figure 2: Global overview of our workflow to execute certified model transformations on Apache Spark.

Coq to Scala The Coq environment includes an extraction mechanism targeting functional languages:
OCaml, Haskell, or Scheme. Although an automatic extractor to Scala is available [25], it supports only a
subset of Gallina on an outdated version of Coq. Hence, we opted to perform the extraction manually. We
perform manual extraction on two levels: first, to create the core engine (gallina2scala in Figure 2), then to
obtain Scala rules representing a CoqTL transformation (coqtl2scala).
• Gallina to Scala. The executable CoqTL specification can be seen as a functional program that

interprets the transformation code. We produce a literal translation of this interpreter in Scala. For
extracting Scala code from Parallelizable CoqTL, we translate Gallina types and (pure) functions into
their corresponding types and pure functions in Scala.

• CoqTL to Scala. The CoqTL parser translates the concrete syntax of the transformation into Coq code
to construct an abstract syntax tree. Obtaining the same transformation in Scala requires constructing
the same abstract syntax tree as Scala objects. Note that Scala constructors for the abstract syntax are
the literal translation of the corresponding Gallina constructors in CoqTL.

Distributed Data Structures Spark RDDs are data structures that are automatically partitioned, re-
sulting in the distribution of the computation operations on a Scala sequence of serializable elements. From
a user point of view, RDDs can be manipulated as lists using the same primitive functions, and parallelism
is implicit. The advantage of using such abstraction for parallelism is the semantics preservation of the
operations on the distributed structures. Because of the popularity of Spark and its support, we assume the
correctness of parallel operations on the data. The efficient use of RDDs requires an effective partitioning

3https://github.com/atlanmod/SparkTE public/
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Figure 3: SparkTE feature diagram for its modelling solution.

of data. For instance, to take advantage of the internal multi-threading mechanism, it is typically recom-
mended in Spark to assign four data partitions to each core. Each independent computation of a partition
is referred to as a task. The Spark task scheduler makes the distribution following a round-robin approach,
optimizing load-balancing: once a task is ended on a core, a new one can be assigned from the waiting list.

2.3.3 Feature diagrams for Parametrizable SparkTE

Next to a correct implementation of Parallelizable CoqTL in SparkTE, using functional structures (e. g., List)
and pure functional features, we introduced additional solutions in SparkTE. Firstly, the representation of
the model and its navigation present several approaches based on different data structures and different
approaches for representing links. Secondly, each part of the execution might follow a different strategy.
As illustrated previously in the new specification of CoqTL, the instantiation of elements and links might
depend on the purpose of having a solution for reasoning or a solution for increasing parallelism oppor-
tunities. Finally, since SparkTE is based on Spark, some features are Spark-related. We will briefly discuss
the latest later in the section.

Modeling approaches In SparkTE, models follow a very generic specification stating that models
must only implement two functions: one to get elements and one to get links. The concrete implementation
is a couple of two sets: one for the elements and one for the links. Figure 3 gives an overview of the features
described below. To tackle memory issues that can be faced when dealing with very large models (VLM),
it is possible to distribute these two sets using RDDs and create a graph by GraphX. Once the model is
distributed, it can be transparently queried by the user, using expressions as explained in Section 2.3.1.

On the one hand, the sequential solution offers two possible ways to navigate among the links of the
model. First, links can be reached by iteration on the full set. This operation only shows benefits on a
very small model since the browse of data is made instantly. A second approach is to store links in a
HashMap, using elements and types of links as keys. Accesses are direct, but creating such a structure
requires additional operations with a CPU cost. Also, in Scala, HashMap keys are managed in a non-linear
structure (a tree). It aims at improving the speed of accessing data but requires an additional amount of
memory. Finally, the links can either be represented as a tuple of elements with a label or only using their
IDs. The latest stores less information and does not duplicate the objects during the distribution, only their
IDs, but it leads to the need of resolution when users want to access the content of the objects from a link.

On the other hand, distributed models take advantage of the distributed graph structure and allow users
to use several computational models for link navigation. It can either be using Pregel iteration, with the
propagation of messages to get only a subset of links, or by filtering the distributed set of edges represented
as triplets composed by a source, a label, and a target. Note that in the distributed case, links are represented
by edges and are always built from the IDs of elements. However, their representation as triplets in Spark
gives direct access to both the element ID and the element itself.

Finally, the model can be stored at different levels on the machine. In a sequential implementation of the
model, i. e., when the model is fully duplicated on each computational node, the storage must be explicitly
handled. SparkTE supports two modes: the model can be fully loaded in memory or kept on disk using
XMI or JSON files. Distributed data with Spark can be natively stored at different levels by specifying a
StorageLevel. This approach is discussed later. In future work, we consider storing the model in a remote
database to limit the amount of data loaded in memory, but this approach would increase computation
time because of the necessary communications.

Execution strategies Section 2.3.2.2 has shown there exist different semantics for performing a model
transformation in SparkTE. In the implementation of Parallelizable CoqTL, we put a lot of importance on
correctness. In the following features, we do not consider correctness aspects but only focus on perfor-
mances. Figure 4 gives an overview of the features described below.
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Figure 4: SparkTE feature diagram for its execution strategy.

The first feature, the tuples generation, can follow different strategies. As explained before, generating
all the tuples is not always necessary. However, it tackles an imbalance in the distribution of data since all
tuples have the same weight. In the other case, generating the tuples from the types of rules reduces the
total number of tuples. Note that if several rules have the same input types, duplicates might be found
in the generated tuples. As an option, we also propose adding a distinct operation which might add an
additional cost of computation. Lastly, if the input models are very large, tuples can be generated using a
Cartesian product of RDDs. This approach starts to be very inefficient for tuples of size bigger than 2.

The second feature of choice is the type of structure used for storing the generated trace links at the end
of the instantiate phase. These trace links will be used to resolve output elements in the application phase
to create links. We propose three data structures:
• a List that is naturally made by construction during the instantiate phase. This approach is simple but

terribly inefficient since elements cannot be accessed by index. Resolution is conducted by exploring
the full list;

• an Array that is collected from the RDDs during the distribution of computation in the instantiate
phase. As for lists, the resolution is costly and inefficient since the index of the array does not consider
the stored elements, only their positions. However, Java uses less memory for storing an array instead
of a list;

• a HashMap with the input element as key, and a list of output tuples as value, each containing a rule
name, a pattern name, and a list of output patterns. This solution is the fastest to use but necessitates
additional computation to build and more memory for storing the keys.

By default, all these structures store the elements and their associated output. It is also possible to only
consider the identifiers of the elements to save memory.

Finally, the second part of the computation, designed in the apply phase, can be executed from trace-links
or from scratch, as described in Section 2.3.2.2. The first solution reduces the global amount of computation
by avoiding the second instantiation of output elements. However, it imposes a synchronization barrier
called a gather operation to collect all trace links in the master node. Depending on the available amount of
memory on the master node, this solution can slow down the computation. Recomputing the full links from
scratch, including the application of instantiating part of rules to input patterns, allows a fully distributed
computation. This approach takes advantage of a large number of computational resources available in a
cluster. The two approaches might lead to duplicate results. That’s why we also propose to apply a distinct
operation on the resulting links. It adds more computation time but reduces the size of the result.

Additional Features Spark has more than 200 parameters to configure an execution environment.
Existing work has illustrated how challenging it is to configure such an environment [26]. In SparkTE, we
propose two internal configurations of Spark:
• The storage level of the distributed structures varies according to the available resources. Indeed, a

small amount of memory would force a user to prefer disk usage instead of keeping all the data in
memory. Spark proposes to define, for each RDD, a storage level which can be: only memory, only
disk, or a hybrid solution. The latest favours memory usage, but start swapping on disk to avoid
out-of-memory errors. In addition, it is possible to duplicate the data on several nodes (up to 3),
ensuring higher fault tolerance and reliability. Finally, a user can specify Spark to serialize the content
of RDDs on nodes to reduce its size. This additional computation increases the distribution time of
data (caused by serialization operations) but profits to machines with a small amount of memory.

• Communications in Spark are mostly implicit. Contrary to other libraries (e. g., MPI [27]), the library
gives a very high level of abstraction, where managing parallelism details such as the concrete
distribution of chunks among nodes or the concrete communication are not doable from the user
perspective. More generally, all the underlying computations are optimized by taking advantage of
functional composition equivalences [28]. However, the broadcast and the gather operations, that is,
sending data to all nodes and getting back all the results into a single node, are managed from the
user perspective. The first can be implicit (by calling a variable from the sequential scope in an RDD)
or explicit using the broadcast Spark operator. The second is usually processed by calling a collect
operation at the end of a chain of distributed computation. This operation simply gathers all results
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into an array on the master node of the cluster. It is also possible to use a reduction operation, called
f old, to gather results in parallel into a single value. The latter can also be used as a collect operation.

2.4 Experiments

In this section, we aim to experiment with the different approaches we have implemented on the different
levels of design. However, because of the complexity of experimenting on an engine with many possible
parameters, this deliverable will not show results for this work. A preliminary approach to do so can be
found in Section 3.

2.4.1 Expression evaluation

We present here the preliminary results of experiments we processed using the five different implemen-
tations presented above. Each example ran 30 times. The relative speed-up of the different solutions,
compared to a naive sequential implementation, reported in Table 2 is the average over the 30 experiments
of the maximum value of the execution times of all the Spark processes. Note that we only collect the
execution times of score in its different implementation. The experiments have been processed on a
shared memory machine (32 GB) with an Intel(R) Core(TM) i7-8650U processor having 8 cores at 1.90 GHz.
We used the following software: Ubuntu 16.04, Java 1.8 with Scala 2.13.2 (Spark 3.0.1). The experiments
have been conducted on 8 different data sets that can be found in a GitHub repository4.

Dataset Speed-up (compared to naive sequential)

# name #users #posts #comments #likes size
Naive

Sequential
Naive

Parallel
MapReduce Pregel

Naive
+ Pregel

MapReduce
+ Pregel

1 1 80 554 640 6 154 KB x 1 x 0.40 x 5.82 x 10.30 x 9.40 x 4.63
2 2 889 1,064 118 24 251 KB x 1 x 0.39 x 0.46 x 0.36 x 0.44 x 0.46
3 4 1,845 2,315 190 66 537 KB x 1 x 0.51 x 0.85 x 0.68 x 0.66 x 0.71
4 8 2,270 5,956 204 129 983 KB x 1 x 0.51 x 2.34 x 0.35 x 0.15 x 2.96
5 16 5,518 9,220 394 572 2 MB x 1 x 4.25 x 4.17 x 5.21 x 4.68 x 4.03
6 32 10,929 18,872 595 1,598 4.22 MB x 1 x 4.68 x 2.39 x 2.83 x 1.97 x 3.91
7 64 18,083 39,212 781 4,770 8.42 MB x 1 x 4.07 x 4.58 x 4.12 x 5.17 x 3.27
8 128 37,228 76,735 1,158 13,374 17.1 MB x 1 x 7.28 x 7.61 x 9.52 x 9.66 x 9.22

Table 2: Preliminary performance results of queries on a single machine.

It appears clearly that all the solutions do not provide the same speed-up depending on the data set.
The first observation is that using a parallel solution on a small data set is not worth it. It can be explained
by the difference between the computation and the communication cost. Having communications between
processors increases the execution time of a program. To decrease the computation time of a parallel
program, the part that is executed independently on each processor must propose enough speed-up to
balance with the communication time. Second, no unique solution is better for all the data sets. For the 8th

data set, Pregel looks to provide a better speed-up than the other solution. On the contrary, in experiment 6,
using Pregel seems not to be the best solution. Finally, we can observe that mixing approaches can largely
increase the performance of the query (e. g., “Naive + Pregel” on the data set 7).

The observations do not provide formal proof to decide which strategy is better than another one for a
given case. Additional experiments should be conducted with the following criteria:
• the use of data sets with more specific topology (e. g., high-number of comments, and sub-comments,

for each submission),
• larger data set (the TTC18 provides three additional, larger data sets),
• the use of a distributed architecture with several nodes (e. g., Grid’5000 [29]).

2.4.2 Transformation semantics

All results presented in this section have been executed ten times on the same hardware configuration,
and an average is presented. Furthermore, all our experiments have been conducted on the French
experimental platform for distributed computing Grid’5000. Grid’5000 (G5k) is made of geographically
distributed clusters of machines in France, each one with its specific hardware setup. G5k is a large-scale
and flexible testbed for experiment-driven research with a focus on parallel and distributed computing,
including cloud, big data and AI [30]. It provides access to a large number of computational resources,
physically located at 8 sites in France and Luxembourg. The resources are distributed to computational
clusters from which several nodes can be booked. A node is a virtual machine deployed on a physical
machine (server). This platform also facilitates the reproducibility of the experiments by offering a way
to build the same environment for any researcher. However, Grid’5000 makes us dependent on available

4https://tinyurl.com/y63tcl6b
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machines (i. e., nodes) for provisioning, which is why we use two different clusters of Grid’5000 in our
experiments [29].

For each experiment, the number of machines and the number of cores is specified. One can note that the
number of machines corresponds to the number of workers instantiated in Spark and that one additional
dedicated machine is provisioned to host the master of Spark. All our codes, raw results, and analysis
scripts are publicly available online5. The first model, designated as M1, is composed of 150 elements and
300 links, while the second (M2) is four times bigger: 600 elements and 1,200 links.
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Figure 5: Relative speed-ups of SparkTE with sleeping times.

The transformations specified in CoqTL, subsequently translated to Scala and Spark, are always correctly
computed by SparkTE, i. e., with the expected output of the transformation, for all our experiments. We have
used from one to eight machines of the clustergros (2x18 cores Intel Xeon Gold 5220CPU @ 2.2 GHz-3.9 GHz,
96 GB of memory, and interconnected systems at a bandwidth of 2x25Gbps). We want to show the per-
formance gain obtained thanks to our three optimizations. For this purpose, we execute the same identity
transformation on the direct implementation of the CoqTL specification (without optimizations) on M1.
On one core naive is computed in 27 seconds by SparkTE and in 52 seconds by the CoqTL implementation.

To experiment with the scalability of the new semantic of SparkTE, we modelled computation time
within the identity rules of the transformation. We explicitly called sleeping times on three parts of the
rules: the guard condition, the instantiate expression and the apply expression. The shown results consider
setting the same sleeping time for all three. More details about the experiments can be found in [13].

Figure 5 shows the speed-ups observed for each model according to the sleeping time and compared
to the theoretical ideal speed-up. The black dashed line represents 100% of the ideal speed-up, while
the red dashed line represents 50%. When increasing the sleeping time, i. e., the execution time of the
transformation, the speed-up is enhanced and is closer to the ideal one. By increasing the size of the data
set, one can note a slight increase in the speed-up by comparing B1 and B2 results, respectively, in Figure 5a
and Figure 5b. Indeed, in Figure 5a, at 32 cores, more than half of the points are below the 50% optimal
value, while in Figure 5b only one point is below this theoretical value. We observe that at 128 cores, the
transformation of M2 only needs a sleeping time of 120 ms to reach 50% of optimal speedup.

2.5 Conclusion

In this Section, we have illustrated the variety of solutions for designing a distributed model transformation
engine. We proposed SparkTE, a distributed model transformation on top of Spark, proposing correctness
and good vertical scalability. Experiments have shown the scalability of the engine and the impact of the
different configuration choices. In future work, we want to conduct experiments on all combinations of
parameters for the SparkTE features on inputs with different topologies to illustrate the performance gain
while having a well-configured engine, especially on VLMs.

5https://github.com/atlanmod/SparkTE public
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3 Multi-Parameter Benchmark Framework

Every non-trivial application has a large number of parameters, each of them having varying sizes of
value sets, i. e., different numbers of values for those parameters. Some of these parameters influence
the application’s performance, i. e., execution time, memory, disk or network use, which is of interest to
the application’s users. They would like to have the application finish in the shortest time, use the least
amount of memory or limit the network traffic to a certain extent. Often these goals conflict with each other;
however, finding the best parametrization6 is crucial to improve the user experience of the application.

To make the general goal more specific, we focused our research on Spark applications, i. e., software
that can be deployed on a Spark cluster. SparkTE, that was introduced in Section 2, is such an application.

3.1 Research objectives

Finding the best parametrization in a naive way is a time-consuming endeavour due to the exponential
number of combinations that have to be checked (cross-product of the parameter value sets). A way to
reduce these combinations is to use good filter functions that remove the unnecessary combinations, e. g.,
those that do not have an influence on the optimization goal or might yield equivalent results. Another
way is to leverage easy access to large amounts of computational capacity in the cloud, so we can yield
the benchmark results faster by testing more parametrizations in parallel. However, this approach has
high-cost implications that we have to pay. To summarize, our research objectives are:

RO1 Develop a multi-parameter benchmark framework to find the best parametrization of a Spark appli-
cation according to a goal (i. e., execution time, memory or network use),

RO2 Use cloud infrastructure to test the parameter combinations to yield the fastest results.

3.2 Motivating example

Let’s take a simple word count application that counts the number of occurrences of each word in a text
(corpus), illustrated by Listing 5: Line 1, the instruction reads the file into an RDD in Spark. After that,
in line 2, the content of the file is splitted by white space, groups the words by occurrence, and returns
them in descending order of occurrence. Finally, line 3, the most frequent word is printed to the standard
output. The parameters of the application are: the name of the file (filename), the replication factor
(replication, on how many nodes the RDD will be copied on the cluster), the number of partitions
(partition, how many RDDs the file’s content will be split into).

1 val file: RDD[String] = nFile(filename, replicate, spark,
partition)

2 val res = file.flatMap(line => line.split(" ")).map(word =>
(word.replaceAll("[-+.ˆ:,;)(_]", ""), 1)).reduceByKey(_
+ _).sortBy(e => e._2, ascending = false).collect()

3 println(res(0))

Listing 5: Word count example Spark application.

In our example, we used a corpus with 857,116 words (bible.txt), experimented with replication
factors 1-2 and number of partitions 1-3, as shown in Table 3. We measured both the execution time
and the memory use of the application in six different scenarios to check all possible combinations of
replication and partition.

File name Replication factor Number of partitions
bible.txt 1, 2 1, 2, 3

Table 3: Word count parameters.

6Best parametrization is a concrete binding of the parameters to values with which the application has the best performance.
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Figure 6: Overview of the approach.

3.3 Architecture and approach

Figure 6 provides an overview of our benchmark approach. It takes as input:

• the Spark application to benchmark,
• the ordered set of parameters with their value sets, and some constraints describing the prohibited

combinations of the parameter values (e. g., Parameter A cannot have value a’, if Parameter B
has value b’),

• the benchmark framework parameters: Spark cluster configuration, the number of warm-up and
measurement rounds with each combination and the number of parameter combinations we want to
benchmark.

We need the input parameters to be sorted by priority, i. e., the parameter with the highest impact
on the measurement goal (e. g., memory use, execution time or network traffic) should have the highest
priority. Although several methods exist that help decide the prioritization (e. g., in an empirical way by
learning from previous measurements, following theoretical assumptions, following industrial or research
best practices), it was out of the scope of our research to decide which is the best way to set the priorities.
In our case, we used the experiences gained from previous measurements to decide the priorities among
the parameters.

After the prioritization, we built a Monte Carlo tree to perform a Monte Carlo tree-like search [31] on
the different combinations of the parameter values. During the tree construction, we removed those nodes
that would give a forbidden combination of the parameter values (due to the constraints defined between
the parameters in the input step).

In each benchmark round, we (1) select the next parametrization from the tree, (2) deploy the applica-
tion with this parametrization on the cluster, (3) run the application and collect the metrics, (4) save the
parametrization with the measured metrics, (5) when we have enough data collected then we save the
concrete value (binding) of the parameter that yielded the best result for the given metric, and (6) update
the tree with this information and move on to get the next parametrization. In order to avoid concluding
results from just one measurement, each parametrization is measured in m number of measurement rounds,
preceded by n number of warm-up rounds. The average of the metrics values measured in the m number of
measurement rounds will be the metrics values saved for that parametrization. We repeated the benchmark
loop until we experimented with all valid combinations of the parameters or the number of combinations
we wanted to benchmark. Finally, this algorithm returns the best parameter binding(s) for the given metrics
and a CSV table with all measurement results.

Comparing benchmark results when multiple metrics are measured is a difficult task. Therefore, we
give the opportunity to the user to define the comparison function to compare which measurement result
is better in these cases. In our example (Section 3.2), we measured both the execution time and the memory
use of the application. However, we gave higher weight to the execution use, i. e., the lower it is, the better,
despite possibly yielding a higher memory use.

The benchmarking framework is independent of the execution environment (computation cluster) on
which the application is deployed in Spark. In the following subsection, we introduce a cloud infrastructure,
Grid’5000, that can be used to run the benchmark.

3.4 Evaluation

On G5k, we booked a single node with 64 GB RAM and Intel Xeon E5-2660 CPU at the Nantes site of the
cluster and installed Spark on it. After that, we ran the benchmark workflow on the motivating example
(Section 3.2) that concluded the following measurement results:
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File name Replication factor Number of partitions Memory use (MB) Execution time (ms)
bible.txt 1 1 3,156 33
bible.txt 1 2 3,267 32
bible.txt 1 3 3,494 44
bible.txt 2 1 3,878 44
bible.txt 2 2 3,436 43
bible.txt 2 3 3,334 44

Table 4: Benchmark results on the word count example.

From the results in Table 4, we can conclude that replication factor 1 with two partitions is the best
parametrization of the running example in the given deployment environment because it yields the shortest
execution time (32 ms) despite a larger memory use (3,267 MB) than the smallest one (3,156 MB).

3.5 Related work

Several benchmarks and benchmark frameworks have been defined and implemented in the past to measure
the performance of applications. One of them is MONDO-SAM, a framework to systematically assess MDE
scalability. Izsó et al. [32] proposed the framework to enable systematic and reproducible benchmarking
across different domains, scenarios and workloads in Model-Driven Engineering. The framework offers
four extensible components for the benchmark: the model instantiator (to create the input models), the
benchmark component (to measure the performance of different tools for given cases), the metrics evaluator
(the tool-specific way of measuring a given metrics), the result reporting and analysis (to compare the
measurement results and conclude the scalability of the measuring tool on the given cases). Similar to us,
they were also benchmarking model-driven applications. However, their focus was on providing a generic,
extensible framework to measure the performance of different tools on certain models and model-driven use
cases (e. g., query, transformation). Compared to them, we focused on finding the best parametrization(s)
of (model-driven) applications that can be deployed on Spark clusters.

Program autotuning is a paradigm that enables the software to tune itself to its environment, so it
performs the best under the given circumstances [33]. Ansel et al. implemented OpenTuner [34], an
extensible framework for program autotuning. The framework (i) employs different search techniques to
find the best configuration (parametrization) of the given application, (ii) offers user-defined measurement
functions that can be adapted to the applications’ needs to correctly measure the metrics, and (iii) provides
a results database to store the measured metrics. Compared to our solution, OpenTuner is a more generic
and mature framework for finding the best parametrization of an application for given metrics. However,
it does not support constraints to remove invalid parameter combinations, and its focus is not on Spark
applications.

3.6 Conclusion

We introduced a multi-parameter benchmark framework to find the best parameterization of a Spark
application. We used a cloud infrastructure (G5k) to test the parameter combinations and found the best
parametrization for our motivating example application. The prototype implementation of the framework
is available on GitHub7.

In future work, we plan to extend the framework so that it is able to run the measurements in parallel
on different machines in the cluster. Thereby speeding up the overall execution time of the benchmark
workflow. Besides, we will experiment with different applications and advertise the framework for a
broader audience in the MDE and software engineering communities so that other software engineers can
also benefit from our work.

7https://github.com/lowcomote/multi-parameter-benchmark
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4 Model Transformations and Scalable Model Checking in the Cloud

The elastic scalability of the cloud can be leveraged to deploy a large number of computational resources
(CPU, memory, disk) in a short time and to be able to scale the system up and down according to the
current service load. This means we are able to add new computational nodes to the system and deploy the
application on them according to the user demand. In order to be able to leverage the elastic scalability, the
cloud providers must provide appropriate APIs to deploy the new nodes at runtime, and the applications
must be able to take benefit of the extra available resources; either by starting a new instance of a part of the
software (component) that is under heavy load or to add the extra resource to the already running software
system. This way, the end-user experience will improve as the software system will be responsive, despite
the growing number of user requests. Of course, the cloud has its physical scalability limits due to the finite
number of servers and computers building up the cloud infrastructure, but usually, it is much bigger than
the applications in reality need.

In this section, we will introduce a cloud-based model validation and verification workflow that is able to
verify the correctness of SysML state machines and activity diagrams with respect to reachability properties.
SysML (Systems Modeling Language) is a standardized modelling language by OMG [35] to describe the
structure and behaviour of systems. Several vendors and products are adopting the requirements, design,
simulation, and code generation aspects of the standard.

A predecessor of this work was published at the OpenMBEE workshop of the MODELS conference in
2020 [36]. A recent work version is under review in a renowned systems engineering journal.

4.1 Research objectives

We aimed to leverage the cloud with the following questions that we use as research objectives:

• RQ1: Can the workflow verify reachability properties on artificial and industrial models?
• RQ2: What are the benefits of using a cloud-based approach in the deployment if multiple users

concurrently use the workflow on an industrial model?

4.2 Motivating example

(a) Composite system structure. (b) Block definitions.

(c) Behaviour definitions.

Figure 7: A simple SysML model describing a simplified Spacecraft and Ground Station to illustrate the
scope of our approach.

Consider the composite system of a simplified Spacecraft and Ground Station model in Figure 7 adopted
from the OpenSE Cookbook [37]. As soon as the Ground Station is in Operation, it notifies the Spacecraft
to start sending Data. The station counts and forwards the incoming data packets via its Status port.
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The Spacecraft is waiting Idle until it receives a Start signal from the station to start sending data in
packets. Data transmission consumes 1% of battery power per packet, and if the battery level falls below
80%, ongoing data transmission is paused until full recharge.

There are several properties that the system design has to fulfil. Let’s consider that the Spacecraft (a)
should only start transmitting after receiving a Start signal, and (b) should never transmit when the
battery is below 80% and the Ground Station has already received at least 20 packets.

While Property (a) could be checked in principle by reviews or model validation rules, Property (b) is
much harder as we have to consider all feasible paths in the model.

These properties can be captured as reachability properties on state machines of the composite system.
Such properties describe (un)desirable state configurations whose existence shall be proven by model check-
ers. State configurations (state predicates) consist of states of the state machines and logical expressions
over their variables. If the state configuration is reachable, the model checker returns an execution trace,
proving how the system gets into this configuration starting from the initial configuration. If the state
configuration is desirable, it is correct if it may exist in the system. On the other hand, if it is an undesirable
state configuration, it is an error if such a configuration exists.

Figure 8: Reachability property.

SysML sequence diagrams can be used as a syntactic means to define the reachability property. The
diagram consists of lifelines representing the part properties of the composite block. Each lifeline can contain
several state invariants defining the state configuration to be reached by the respective state machine. A
subset of JavaScript can be used to express logical predicates over variables. The reachability property of
the composite system is the conjunction of the state predicates defined over the lifelines. The property,
illustrated by Figure 8, defines the undesired configuration where theTransmitting state of the Spacecraft
is active, the battery level is below 80%, the Ground Station is in the Receiving state and has already
received at least 20 packets, corresponding to Property (b).
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Figure 9: Overview of the architecture.

4.3 Architecture and approach

We implemented a verification and validation approach using proprietary and open-source tools. For
modelling, we chose Cameo Systems Modeler8, a proprietary SysML design tool, due to its popularity in
the industry. For the verification, we used the open-source Gamma Statechart Composition and Verification
Framework [38] due to its precise formal semantics and automatic translation to different model checker
back-ends, i. e., UPPAAL and Theta. The architecture of the workflow is depicted in Figure 9.

Systems engineers design the state machines activity diagrams and define the reachability properties
of interest in SysML modelling tools, and push them to the OpenMBEE MMS9 model repository. Then,

8https://www.nomagic.com/products/cameo-systems-modeler
9https://github.com/Open-MBEE/mms-alfresco
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Figure 10: Validation results in the Jupyter notebook.

users open a web browser to perform verification and validation (V&V) actions in a Jupyter notebook10. The
frontend is connected to the Validation and Transformation Service (VTS) in the backend, which validates the
structural correctness of the SysML models 1 before transforming them to Gamma models 2 and verifying
them with the Gamma Framework 3 . The verification result, including a possible Gamma Execution Trace
that is back-annotated to a SysML sequence diagram, is presented in the browser 4 .

The Jupyter notebook is an open-source web application that allows users to execute code and show
visualizations in a structured way in the browser. A notebook is divided into different steps, each of them
having a description and a runnable code fragment. We use Python in the notebook to demonstrate the API
use of the VTS and its integration possibilities with other tools as well. Figure 10 illustrates the result of the
validation step in the notebook. The user can see the validation messages and their severity accompanied
by the ID of the erroneous element. By clicking on the element ID, the user can navigate to the element
directly in the browser using an appropriate model viewer or, alternatively, a desktop SysML tool.

On the backend, the Gamma Framework translates the intermediate models to formal models and
queries to be checked by model checkers, i. e., UPPAAL [39] or Theta [40]. The philosophy of Gamma is to
have a portfolio of model checkers. Each tool implements different algorithms tailored to specific classes
of problems. Therefore the larger variety increases the chance of successful verification. For example,
UPPAAL uses explicit model checking and is efficient for timed systems, while Theta uses a wide array of
abstraction-based symbolic techniques that have a larger overhead on simpler problems but have a higher
chance of verifying harder ones where an explicit algorithm would not scale.

In order to have a scalable architecture to validate and verify industrial SysML models, we moved
the processing from the client machines to the cloud. Most components in the architecture, marked by
a logo on the architecture figure, can be deployed on Kubernetes11, an open-source cloud orchestration,
deployment and scalability tool for containerized applications. Applications can be deployed into different
execution units, called pods, with a certain amount of computational resources allocated. This way, they
can be scaled up with a high amount of CPU and memory (vertical scalability), or new pods can be started
on demand (horizontal scalability) as long as the cluster has enough computational resources. The ability
to scale out in the cloud allows the adaptive allocation of a high amount of computational resources [41],
that can address the high resource demand of the Model Checker Runtime (MCR) component. Moreover, the
portfolio of model checkers philosophy of Gamma can also benefit from the cloud-based setting because we
can execute multiple model checker configurations in parallel (and stop when one of them gives a result).
Ultimately, if we accumulate enough data about the target models, we may be able to reduce the executed
configurations to a few promising ones and achieve a relatively good price/performance ratio.

As model checking is the most resource-intensive task in the workflow, we serve each verification task
in a separate pod, running the MCR. This way, the long-running tasks can be served in parallel, and as the
concurrent pods can be deployed on physically different machines, they do not hinder the performance
of a single computer. Therefore, the workflow can serve many users running their verification tasks
concurrently and enable its use as a common verification service for a team of systems engineers.

Moreover, to improve the performance of the static validation and transformation phases, we use
IncQuery Server (IQS), a scalable model query middleware on top of model repositories [42]. IQS builds
an in-memory index from the model and efficiently evaluates model queries implemented in Viatra Query
Language [7]. These queries are used by model validation and transformation rules. We implemented
several model transformation rules that work on the index and build the target and traceability models.
The transformed models are persisted and used in the verification and back-annotation phases of the
workflow.

Besides scalability, another advantage of our approach is the separation of concerns for the engineering
and the formal verification domains: systems engineers design both the models and the reachability prop-
erties in a high-level engineering language they are familiar with. The formal models are automatically
derived from these high-level design models by a series of transformations hidden from the users. The ver-

10https://jupyter.org
11https://www.kubernetes.io
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ification result is back-annotated to the original engineering language, thus making it easier to understand
without expertise in formal methods. Besides, the workflow helps engineers to inspect the execution in
detail or to derive further test cases.

(a) Execution Trace in Gamma.

(b) SysML sequence diagram trace.

Figure 11: Execution Trace to SysML sequence diagram mapping.

Demonstration of the workflow

The workflow can be illustrated by checking Property (b) on the motivating example (Figure 8). The
verification result trace (Figure 11) proves that the property is violated, because in the last state battery
is 79%, the Spacecraft is still transmitting and the Ground Station has already received 20 packets.
Simulating the sequence diagram trace in Cameo Simulation Toolkit12, one can find that the entry action
of Discharging state causes the issue (Figure 7c). The faulty model can be fixed by moving the action to
the effect of the outgoing timed transition. Rerunning the verification proves that the undesired state is not
reachable anymore.

Due to space limitations, the details of the Gamma Execution Trace to SysML sequence diagram mapping
are skipped here. Interested readers may find them in the journal paper that is under review in a journal.

12https://www.3ds.com/products-services/catia/products/no-magic/cameo-simulation-toolkit/
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Name Target state
Number of

states
Number of

activity actions

TMT1
Minimize

Sensor Readings 5 213

TMT2 M3 Alignment 3 8 533

TMT3
Broad Band

Phasing 3um 9 636

TMT4
Broad Band

Phasing 1um 3 10 739

Table 5: Reachability properties in TMT and metrics on the shortest path to reach the target state.

4.4 Evaluation

We evaluated our proposed V&V workflow in different scenarios imitating real-world use to answer the
research questions posed in Section 4.1. In order to answer these research questions, we set up an evaluation
environment on Amazon Elastic Kubernetes Service (EKS13). The infrastructure consisted of two EC2 nodes:
one m5.xlarge instance (4 vCPUs, 16 GB RAM) and one m5.2xlarge instance (8 vCPUs, 32 GB RAM). The
components of the architecture in Figure 9 were deployed as follows: IncQuery Server (IQS) and the Validation
and Transformation Service (VTS) were running on the m5.xlarge instance for each research question; the
Model Checker Runtime (MCR) was deployed in a varying number of pods on the m5.2xlarge instance,
depending on the scenario.

For benchmark purposes, we used the running example Spacecraft model (Figure 7) with two versions
and a modified version of OpenMBEE’s Thirty-Meter Telescope (TMT)14 model. In the faulty version of
the Spacecraft model, the reachability property (Figure 8) is satisfied; in the fixed version, the reachability
property is unsatisfied due to corrections described in Section 4.3. Both the faulty and the fixed versions of
the model contain 11 states, 23 transitions and 5 activity actions.

In the TMT model, we chose the Procedure Executive and Analysis Software (PEAS) block and adapted its
state machine and activities to the elements supported by our workflow (depicted on Figure 7). We removed
do-behaviours from the state machine, removed unsupported Actions from the Activities, replaced Float
variables with Integers, and resolved data type inconsistencies in Activity actions. This was necessary to
make the model conform to our approach. Nevertheless, the resulting model is still quite complex and
represents the general modelling patterns used in the OpenSE Cookbook. We specified four reachability
properties for the TMT model, denoted as TMT1–4 in Table 5. The table contains the target state and the
number of states and activity actions for the shortest paths satisfying the respective property. Altogether
the PEAS block contains 61 states, 93 transitions and 2,310 activity actions.

4.4.1 Research question answers

We describe the scenarios in which the workflow was executed and the obtained results.

Answers to RQ1

Scenario: We deployed the MCR in one pod, and we only sent one validation, transformation and ver-
ification request at a time for each model and reachability property. This scenario serves as a high-level
validation of the approach and a baseline for the other scenarios.

Results: Figure 12 depicts the measurement results. Figure 12a shows that the model validation and
transformation were completed in an acceptable time, despite running more than 130 structural validation
rules. The model sizes are reflected in the execution times: while the simpler Spacecraft model is validated
in 2 seconds and transformed in 2.5 seconds, the more complex TMT model is validated in 10 seconds and
transformed in 11 seconds.

Regarding the verification times, depicted in Figure 12b, it can be seen on the hand that UPPAAL
outperforms Theta for the Spacecraft faulty model, which contains timed transitions. On the other hand,
Theta performs better for the TMT model, which contains many data variables due to the large number
of activity actions whose instructions are transformed into variable assignments. The large difference in
verification times by UPPAAL and Theta on the Spacecraft faulty model is due to the fact the abstraction-
refinement algorithm implemented by Theta tracks the values of the timer variables in the model, which
results in a large number of combinations that need to be checked by the model checker. However, in the
case of the Spacecraft fixed model, where the property is unsatisfied, Theta finishes in about the same time
as UPPAAL due to the abstraction domain used in verification.

13https://aws.amazon.com/eks/
14https://github.com/Open-MBEE/TMT-SysML-Model
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(a) Validation and transformation times. (b) Verification times.

Figure 12: Validation, transformation and verification times of the Spacecraft and TMT models.

Answering RQ1: As Figure 12 shows, the approach can transform and verify properties on artificial
and complex industrial models within an acceptable time. Besides, the differences between explicit and
abstraction-based model checkers could also be observed: UPPAAL may handle timed systems better than
Theta. However, further models and verifiable properties are needed to draw a definitive conclusion in
this respect.

As Figure 12 shows, the verification times are the most influential in the whole validation and verification
workflow, therefore in the subsequent research question, we only measure the verification time.

Answers to RQ2

Scenario: This scenario investigates that if we have multiple verification requests, possibly coming from
different users, then how does the approach scale if more than one MCRs are running verification? Therefore
we deployed the MCR on one, two, and four pods. Each pod was handling only one verification request
at a time. We sent four verification requests in a fixed order directly after each other asynchronously to
the workflow. The verification requests were waiting in a queue until being processed by a free pod.
We repeated the measurements on each model checker (UPPAAL and Theta) separately, resulting in six
sub-scenarios (3 pod configurations × two model checkers).

Figure 13: TMT model verification times.

Results: By looking at Figure 13, we can see the execution order and also the effect of the queuing
times of the requests (TMT1–4). As the number of processing pods grows from one to two, so is the overall
execution time of the requests reduced. However, in the case of four pods, we can see that the concurrent
verification requests give a higher load to the only processing m5.2xlarge node, which results in longer
verification times than in Figure 12b when only one request was processed by the node at the same time.

Besides, we can also observe that Theta verified the models faster than UPPAAL, confirming our
observations from RQ1.

Answering RQ2: To conclude, the benefit of using a cloud-based approach in the deployment is, as the
number of pods grows, so can we serve more users concurrently with the same resources, which can result
in lower round-trip times for long-running verification tasks and better resource utilization. However, we
shall also consider the computational capacity of the processing nodes when allocating pods to them to
avoid starvation between them.
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4.4.2 Threats to validity

To address threats to the internal validity of the measurements, we executed 20 rounds of warm-up requests
in each phase, followed by the seven rounds of measurements whose median represents a data point on
each figure. In order to address the external validity concerns, we used an industrial model (TMT) apart
from a syntactic model (motivating example). However, our results might not be generalizable for models
built from elements that are not part of the supported elements (construct validity; Figure 7). Nevertheless,
it is important to note that industrial models are generally confidential and hard to access, so having a
solution presented in this report is vital to move forward to industrial use.

4.5 Related work

To put our research in a broader context, we collected related work about the practical advantages and
perceived challenges of using model-driven engineering and formal methods in industry (Section 4.5), and
applications of hidden formal methods in verifying system models (Section 4.5).

MDE and formal methods in industry

Bucchiarone et al. [43] described tool and implementation challenges hindering the widespread use of Model-
Driven Engineering (MDE). Scalability in terms of size and diversity of artefacts, i. e., models, metamodels,
model transformations and dependencies in any non-trivial project, has been denoted as one of the open
challenges that tools tried to address in the last decade. We encountered similar challenges and therefore
focused on an integrated, scalable tooling environment.

Garavel et al. [44] surveyed 130 high-profile experts in different aspects of formal methods for the 25th
international conference on Formal Methods for Industrial Critical Systems. One aspect was the industrial
adoption of formal method practices. 67.7% of the responders believe that formal methods are now ready
to be used in industry to a limited extent. The reasons for the limited applicability are often related to
the domains, tool maturity, and people’s skill and willingness to transfer and adopt academic research
results to industrial case studies. According to the survey, the most mentioned limiting factor of wider
adoption of the formal methods by industry is the improper integration of formal methods in the industrial
design life-cycle, the lack of proper training of FMs and its steep learning curve. According to the research
participants, more collaborative projects between research and industry and increased support for academic
researchers developing tools can contribute to addressing these challenges. We contributed to overcoming
these limitations by developing a workflow that is tightly integrated into the engineering environments.

Gleirscher and Marmsoler [45] surveyed 216 participants from industry (78%) and academia (22%) about
the use of formal methods (FM) in mission-critical software domains. Their results indicate an increased
intent to apply FMs in the industry across all application domains, suggesting a positively perceived
usefulness. Besides, the intrinsic motivation to use FM is stronger than the regulatory one. Scalability, skills,
and education were perceived as the toughest challenges of applying FMs in practice. More experienced
respondents more often rated these challenges as highly difficult compared to less experienced ones. Finally,
past experience with formal methods was positively correlated with future usage intent. We observed a
similar situation in NASA JPL, where successful previous projects [46, 47] opened the way for working in
an environment to use formal verification as a service.

Verifying systems with hidden formal methods

Software and systems model checking is widely researched, with many tools and approaches available.
Ciccozzi et al. [48] performed a systematic review of solutions to execute UML models. The closest one
to ours is Kölbl et al. [49] who proposed an approach to translate SysML models to the language of
NuSMV, Prism, and Spin model checkers. Similar to us, they used an intermediate metamodel between the
engineering and formal domains, and the counter-examples are returned as SysML sequence diagrams. In
contrast, they verified Linear Temporal Logic (LTL) expressions specified as OCL state invariants in SysML,
supported only send signal actions in activities, and used only a small model.

Calvino and Apvrille [50] proposed the direct model-checking of SysML state machine models. In their
paper, they used AVATAR to design the SysML models that are directly verified by TTool. They support
verifying a broader set of formal expressions specified in the text. The verification results of reachability
and liveness properties are back-annotated directly to the state machines, but a trace of the original model
checker representation is also returned.

Gibson et al. [46] verified properties on SysML statecharts by combining code generation with software
model-checking techniques. They translated the state machines to Java code by the COMODO model-to-
text transformation tool and evaluated certain properties by Java Pathfinder [51]. The verifiable property
was directly inserted in the generated code, the guards of the transitions were transformed manually, and
the result (trace) was not annotated to the original model. They used depth limits as a trade-off between
performance and the ability to verify properties [47].
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4.6 Conclusion

In this section, we presented a cloud-based, scalable model transformation and verification workflow to ver-
ify reachability properties on SysML state machines and activity diagrams, back-annotating the verification
results to the original domain, thereby adopting the so-called hidden formal methods approach [36].

One way to improve the performance of the workflow is to adopt the parallel-reactive model trans-
formation proposed [9, 11]. It enables live, incremental model transformations, i. e., if the source model
changes, then only the impacted parts of the target model will change, which results in a shorter trans-
formation time. Another future work is to extend the supported set of SysML state machine and activity
diagram elements to be able to verify more complex models that are useful for systems engineers.
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5 Composition of Model Transformations

This section discusses model transformation compositions and their associated services i. e., chain selection
and chain optimization.

5.1 Research objectives

The general research objective is to compose and execute model transformations that enable the develop-
ment of complex transformations by reusing and composing simpler and smaller ones [52]. There are three
major activities performed in composing model transformation. First, we have to identify the possible
transformation chain by using a cloud-based search engine [53] or through static analysis of the transfor-
mation language such as Epsilon [54]. The second major activity is to select the transformation chains by
estimating the optimal criteria such as transformation coverage, transformation complexity and the number
of transformation hops. Lastly, another activity involves optimizing a transformation chain by identifying
the usage of the elements that are propagated till the final target model.

5.2 Model Transformation Chain Identification

Identification of possible model transformation chains can be made using the following steps. The first step
is to check if the direct model transformation exists that transforms the source model to the target model.
This is the base condition. Then we identify all the available model transformations that transform the
source model into any of the available intermediate models. Further, we reuse the intermediate model as
the source model with the help of base condition (using depth-first search recursively), and we repeat this
step till we reach the target model. Then, we check all the available model transformations that transform
the identified intermediate model into the target model. Lastly, the source, intermediate and target models
are composed and returned as a model transformation chain.

The input for identifying possible transformation chains is the source and target metamodel. From Fig-
ure 14, the input metamodels are KM3.ecore, XML.ecore. After applying the logic mentioned in the Listing 6,
the output would give a list of lists of chained ecore which is [[KM3.ecore, Ecore.ecore, JavaSource.ecore, Ta-
ble.ecore, HTML.ecore, XML.ecore], [KM3.ecore, JavaSource.ecore, Table.ecore, HTML.ecore, XML.ecore],
[KM3.ecore, XML.ecore].

1 Input: sourceModel, sourceMM, targetModel, targetMM
2 Output: List of possible transformation chains from sourceModel to targetModel
3 identifychain(sourceModel, sourceMM, targetModel, targetMM) {
4 //returns true if a tranformation transforms sourceMM to targetMM
5 findEtl(sourceMM, targetMM)
6 if(findEtl(sourceMM, targetMM) is true)
7 Store sourceMM, targetMM in an ArrayList A1
8 else
9 Traverse the folder/repository that contains metamodel files

10 Store each metamodel as an intermediate metamodel MM_inter and give a name to
11 it's model M_inter is the same as the name of the metamodel
12 if(findEtl(sourceMM, MM_inter) is true)
13 identifychain(sourceModel, sourceMM, M_inter, MM_inter)
14 Store MM_inter in the ArrayList A2
15 sourceModel <- M_inter
16 sourceMM <- MM_inter
17 if(findEtl(MM_inter, targetMM) is true)
18 Store target<< in ArrayList A2
19 Add A1 and A2 in the list of ArrayList A3 and remove duplicates, if any.
20 Return list of Arraylists of chained transformations that can transform from
21 sourceMM to targetMM
22 }

Listing 6: Algorithm for identifying possible chains.

5.3 A motivating example of the selection of a model transformation chain

When chaining model transformations and multiple chains are available in our setting, different criteria
can be defined to characterize the selection of an, in certain ways, optimal chain. The possible criteria
mentioned in [55] are transformation coverage and information loss, but also other parameters may be
considered or even combined. An example of the problem of chaining model transformation is borrowed
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from [55] and it is depicted in Figure 14. Given a user input, composed of the input model, i. e., sample-
km3 which conforms to the source metamodel KM3, and the required metamodel in output, i. e., XML, the
process of finding optimized chains can be summarized as follows.

First, a discovery phase starts by inspecting the available transformations in the repository, which can
also be a local folder, selects the needed transformations and derives the needed transformation chains from
reaching the result. In Figure 14, steps involving identifying possible transformation chains are represented
as filtering from the repository in which the transformations and the associated metamodels can be chained.
In our scenario, the selected metamodel nodes and transformations are reported in dark grey, excluding
the rest of the repository in light grey.
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HTML
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Figure 14: Model transformation chaining scenario.

In this scenario, the list of available chains is composed of three available chains:
Ch1 : KM3→ EMF→ JavaSource→ Table→ HTML→ XML
Ch2 : KM3→ JavaSource→ Table→ HTML→ XML
Ch3 : KM3→ XML

This list of available chains is given to the classification process that ranks the list according to the selected
quality criteria or parameters, and the selected chain is then executed. The execution of the chain returns
the required model, i. e., a model conforms to the XML metamodel. As said, the quality criteria that can
be considered in this scenario may be various. For instance, if we consider (i) transformation coverage,
(ii) transformation complexity or (iii) the number of transformation hops, we may have different results
in the selection process. Transformation coverage is defined as the degree of completeness of a transfor-
mation, which means how many metamodel elements (i. e., metaclass and attributes) of the source model
to be transformed are consumed by the transformation [56]. This may affect the transformation process
since the more the transformation covers constructs from the metamodel, the less the result should lose
output elements. The transformation complexity can be estimated by how much the rules, operators and
expressions are used in the transformation chain. This is a new criterion to define a chain as the best one
by using a heuristic which describes the complexity of the transformation by counting the static elements
of the transformation. This may affect the result in terms of performance, for example, since the more the
transformation engine has to interpret complex operations, the slower the execution will be. When the
repository contains large graphs of available transformations, the user may be interested in getting the
result faster. The third criterion considered is the number of transformation hops that are used to achieve
the target model. This is calculated as the width of the graph visit for each transformation chain. Again,
the performance may be affected as well as the output model to be generated since reducing the number of
hops may reduce the chance of encountering a bottleneck transformation. In this case, it would make sense
to combine the coverage and complexity with these criteria so that the selection becomes a multi-criteria
optimization problem.

The problem of selecting the optimal chains according to different criteria is an open issue that has
been partially covered in [55, 57], where these criteria are hard-coded in algorithms implementing the
classification mechanism. This results in limiting, first for the effort required to add new criteria in the
evaluation, second for the lack of support in defining an optimization strategy considering multiple criteria.

To overcome these limitations, in the next section, we present how we have used MOMoT, a model-
driven optimization framework [58] using search-based techniques to optimize different criteria and, there-
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fore, support selecting optimal transformation chains.
MOMoT15 is a framework that uses MDE principles to solve complex multi-objectives problems by using

search-based optimization. The problems are represented as Ecore metamodels, and particular instances
of the metamodel are used to solve a specific problem. This problem represented by the metamodel is
manipulated by an in-place graph model transformation expressed in Henshin [59]. To that end, the
framework targets optimal transformation sequences leading to optimal models rather than direct model
manipulation. The output model is characterized by different constraints and objectives which are written in
OCL or a Java-like expression language (Xbase) [58]. Finally, a sequence of transformation and parameters
are executed, and the Pareto-optimal solution is found by using search-based optimization [60] that includes
different algorithms such as Random Search, NSGA-II [61], NSGA-III [62], etc., which are defined in MOEA16

framework.

5.4 Approach: Chain selection with MOMoT

In Figure 15, we outline how we use MOMoT to support the selection of optimal chains. It shows
the workflow used to run the selection process, starting from the definition of the needed artefacts, the
configuration of the existing MOMoT modules, and the obtained results. In the following, we walk through
the process and describe the artefacts used following the labels in Figure 15. As elaborated in Section 5.3,
we anticipate the user input to include an input model and the required output metamodel. In addition,
the repository that will be analyzed by looking for chains is also given as a parameter. In our case, we use
a local folder containing Ecore models (metamodels) and ETL transformations. ETL is the transformation
language part of the Epsilon [5] framework that we have used to test the implementation, but the approach
can be easily re-applied for other transformation languages, e. g., ATL [6].

Problem Specification
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Figure 15: The proposed MOMoT extension for best chain selection.

In the following paragraphs, we address the different parts of the problem specification shown in
Figure 15 and describe how optimal chain selection is supported with the individual components of
MOMoT. First, the process for retrieving available transformations from the repository is described. We
then present the metamodel, which describes the problem domain, hence carries elementary information
of the chain selection task and maintains the current solution state, i. e., the transformation path with
respect to the input model to be transformed. Afterwards, the transformation model used for assembling
feasible chains through evolving the model-based problem representation is described. Thereafter, the
quality criteria that we consider and evaluate in the chains are presented along with the validity conditions.
Then, the configuration of the search-based evaluation process is explained, including the algorithms used.
Finally, the MOMoT arrangements are discussed, including (1) the approaches to rewrite the problem model

15http://martin-fleck.github.io/momot
16http://moeaframework.org/
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by rule applications to determine optimal transformation chains and (2) the means provided for comparing
and processing the resulting chain solutions.

Repository Discoverer A repository/folder is first analyzed by the Repository discoverer 1 , which
may be implemented based on the tools developed in [63] or programmatically finding out the possible
chains. This module analyzes the repository given as input in order to create the Repository model in 2 ,
which is needed by MOMoT as part of the problem specification. We summarize the discovery strategy as
follows: for each Ecore model, we programmatically create a node of the graph, and for each transformation,
we add an edge. We highlight that ETL transformation modules do not include links to the source and target
metamodels which are bound at the configuration phase. For this reason, in order to run the discovery,
we consider as a pre-requisite that each ETL module must include in the header section the declaration of
the source and target metamodels (this is optional in ETL, but it simplifies the discovery phase). In this
way, the discoverer is able to retrieve the metamodels and set the edges of the graph. This is a requirement
needed to use the static analysis [64] of the ETL transformation files, which helps to find out the source and
target metamodel of the transformation.

Modeling the problem in MOMoT MOMoT leverages a graph-based representation as a simplified
representation of the problem, which it mutates by applying search strategies as a matter of exploring
possible model variations that constitute the search space. Such a model for our purpose encompasses
vital task details like discovered transformations in our repository model, the currently selected path
to transform the input model, or transformation-related metrics. Therefore, we propose the metamodel
reported in Figure 16.

Figure 16: Metamodel for modelling the search problem.

This metamodel allows deriving representations of the transformation chain selection problem, ones
which serve as input to the MOMoT tool. This, in turn, leads to the use of search strategies to achieve
an optimal model evolution and, therefore, the involved transformation chain (TransformationChain).
Models conforming to this metamodel are automatically created and persisted by the discoverer in 1
after analyzing the given repository input. Indeed, this metamodel allows the creation of instances of
TransformationModel in which ModelTransformationRepository and TransformationChain are contained.
Consequently, ModelTransformationRepository is composed of Metamodels and Transformations. Each
transformation has two references to src and target metamodel. Also, a TransformationChain can be
referred to as an ordered set of transformations that will be composed to satisfy the required input, i. e., the
required start metamodel (derived by the given input model) and the required final metamodel indicating
the targeted transformation output, with an additional (optional) outputMM that reflects the chains current
output metamodel. Consequently, for a non-empty chain, outputMM denotes the current output metamodel.
It is required to realize the constraint that ensures feasible chaining solutions in that the chain leads to the
output model as per user definition. Hence it is used by MOMoT in the search process to match it against
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the chains final instance. As long as the discoverer has persisted in the Repository model, MOMoT can process
it with the rest of the required artefacts.

Transformation Model for Chain Composition As part of the problem specification, transformation
rules 3 facilitate the composition of a chain as an ordered sequence of (chain selection) transformations
identified between the source and the target metamodels. Note that the term ”transformation” here is used
ambiguously as it refers to (1) the mutation of the instance model that conforms to the domain model in
Figure 16, e. g., using Henshin units [59], which we use as part of the problem specification, and (2) the
domain model element (which is an EClass) Transformation (cf. Figure 16) where each instance implies
a mapping between two metamodels, respectively. The former takes place with MOMoT’s search engine
applying rules to the model instance in order to explore its design space in terms of different chaining
paths. The latter refers to possible hops within a solution to the chaining problem, which is reflected in the
model by the Transformation instances referenced through uses relations from TransformationChain (TC).
Altogether, MOMoT’s solution to a task results from the changes it imposes on the input problem model
by means of rule transformations. Here, those reflect a selected Transformation instance to be executed on
the model which we intend to derive a chain for.

MOMoT uses Henshin [59], a graph-based transformation approach, to set the scope of possible changes
for a domain model defined in EMF17. The toolset includes a rule-based model transformation language
to induce changes by exploiting a model’s graph representation and a transformation engine to execute
them. Using the concepts in our problem-describing model (Figure 16), we can define patterns to match
and imply changes in the model graph with so-called units and rules. Matches and the legality after the
change are hereby determined through formal reasoning.

Figure 18 shows the Henshin transformation rules we defined to imitate the selection of a transformation
T for a transformation chain TC. For the generation of a feasible chain, two cases can be distinguished in
terms of matching semantics. Naturally, a T that is available in the repository can be added to TC with
rule addTransformation. Per rule definition, T is limited to candidates that guarantee executability of the
resulting chain i. e., T needs to take as input that chains current outputMM. For the first application, however,
the input of T needs to conform to the metamodel to be transformed, i. e., source of T corresponds to start of
TC, as per user declaration. Taking the chaining example from Figure 14, an excerpt of the instance model
after selecting KM32EMF as first selected T is provided in Figure 17.

KM3: Metamodel

EMF: Metamodel

start

final

TC:
TransformationChain

KM32EMF:
Transformation

XML: Metamodel
target KM32XML:

Transformation

src

src

target

KM3: Metamodel

EMF: Metamodel

start

final

TC:
TransformationChain

KM32EMF:
Transformation

XML: Metamodel
target

KM32XML:
Transformation

src

src

target

uses
outputMM

startTransformation('KM32EMF')

Figure 17: Henshin rule for selecting transformation KM32EMF and resulting model instance (excerpt).

Following the rule application, the uses reference signifies KM32EMF to be part of the chain and EMF as
thereafter emerging metamodel for the chain output, while metamodels defined essentially for the chains
first and last T, start and final, are maintained. Consequently, rule startTransformation ensures that the first
candidates’ input corresponds to the language of the model to be transformed. In any case, the scope for
applicable subsequent candidates is established with target of the appended T becoming outputMM of TC.
The described conditional behaviour is expressed with a ConditionalUnit, which applies one of the rules
depending on whether a T is already part of the chain (rule checkHasTransformation). The same behaviour
could be achieved with different control structures incorporated in other Henshin units [65].

Defining Objectives and Constraints The Quality Criteria that can be used are various, but to demon-
strate the approach, we have chosen the ones anticipated in Section 5.3, i. e., coverage, complexity and
transformation hops, and provide them with the specification in 4 . These objectives support chain selec-
tion from three different points of view, each of which adds a dimension to the fitness function that is used
to evaluate derived chains.

We have used static analysis [64] of EOL and ETL (Epsilon Languages) to traverse through the elements
of the used metamodels and model transformations, respectively [66] and then calculate the three structural
quality criteria/objectives for the transformation chains. The transformation coverage is determined through

17https://www.eclipse.org/modeling/emf
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Figure 18: Model transformation defining the chaining problem in Henshin.

static analyses based on involved source and target models, i. e., srcMMCoverage and trgMMCoverage, and
recorded in the intended attributes in the metamodel afterwards. It is defined in coherence with the criteria
discussed by Basciani et al. in [55]. According to them, the weight considered for a transformation rule
covering a metaclass in input/output is unitary, whereas the individual binding of the transformation,
predicting a structural feature (in/out), weighs 0.5. Also, the transformation complexity is calculated by
counting the number of constructs or elements used in a transformation module. These elements can be
a predicate or reference to a metamodel element or an EOL construct such as keywords or variables. Any
fitness function can be defined using a configuration language provided by MOMoT, which is based on
XBase [67], a Java-like, statically typed expression language. By using this language, the user can define
quality criteria/objectives as part of the fitness function, which will be evaluated on the problem model
to calculate a chain’s optimality. The evaluation process was executed multiple times to estimate the
mentioned indicators (such as Hypervolume and Generational distance) taken from the MOEA framework
based on multiple algorithms such as Random Search, NSGA-II, NSGA-III, etc.

Constraints in 5 enrich the specification to ensure the validity in TC (i) in general and (ii) with respect
to the input model to transform. Accordingly, the output of the T having been most recently added to a
chain (outputMM) poses a domain-specific constraint that limits the selection for the next T to those from the
repository with a corresponding metamodel source (src). Moreover, the first Ts src needs to comply with
the users input model to transform, which is delineated by start of a chain TC. Likewise, a valid chain ends
with a T having the final output metamodel (target) corresponding to TCs final metamodel. Remarkably,
our rule definition in Figure 18 ensures that these constraints are satisfied for the chains that are eventually
delivered in the result set.

Configuring the Search and Evaluation Next to the problem specification derived in previous para-
graphs, the input to model-driven optimization tools like MOMoT usually entails configuring the search-
based optimization process. Objective and constraint definitions elicit the extent to which a derived model
reflects a desirable solution, whereas, for employed optimization techniques, parameters and evaluation
metrics have to be decided to support model mutation and facilitate collective, comparative quality as-
sessment. Therefore, problem-related specifications were previously established upon the metamodel in
Figure 16 to define the search space and declare the fitness and legality of derived transformation chains.
The experimental setup is now complemented with SBO-related (search-based optimization) settings ( 6 )
to facilitate reasonable exploration of chaining selection options. User-defined parameters thereby consist
of the following: (1) Algorithms and associated parameter settings, (2) Termination criterion and run, (3)
Set evaluation measures and statistical test settings.

MOMoT allows to choose from a palette of generic multi-criteria approaches for targeted rule orches-
tration, ranging from evolutionary algorithms to local search to reinforcement learning techniques [58, 68].
In our evaluation, we let different algorithms compete against each other to demonstrate the algorithm-
agnostic nature of this approach and do so multiple times to compare their performance under statistical
support on our selected example. In general, the generated output contains feasible chaining solutions
in terms of a Pareto-optimal solution set, so the user has to reason about trade-offs in terms of quality
criteria. Our goal is to find the best chain in terms of a singular quality or a set and to learn more about
the trade-offs that apply to each of the several feasible transformation chains. Therefore, we run through a
fixed number of evaluations in each run and with each algorithm. Nevertheless, the framework supports
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quality-based termination criteria when a particular fitness level is of interest for the desired solution. The
search configuration we use is described in more detail in the following sections.

Problem Encoding and Search Orchestration As mentioned earlier, MOMoT’s optimization incentive
is to determine rule sequences for the problem instance model to arrive at an objectively optimal model
state with respect to the fitness function. The used Problem Encoding 7 is based on rules specifically
designed to operate on model constituents of the particular domain. In our use case, each rule application
represents a mapping between metamodels and acts as a decision variable as part of a solution candidate for
a chain TC. The effective arrangement of these applications is now subject to the Search Orchestration 8 .
Naturally, how new sequences are generated depends on the used methods of exploration and exploitation
capabilities. A local search, for instance, is concerned with determining the nearest neighbours by adding
a transformation or replacing one in the current chain to spawn new solutions. For the broadly adopted
GAs (genetic algorithms), the framework initializes the population with legitimate chaining sequences
at random. Moreover, the solution length in terms of the sequence of transformations (T) is limited to
facilitate operators for alteration. In this respect, several operators for mutation and crossover are available.
Note that transformation chaining poses a highly interdependent endeavour. Thus chains emerging from
recombination carry a high potential of invalidity. For this reason, repair mechanisms are foreseen to restore
feasibility, e. g., by replacing non-executable transformations in the sequence.

As established earlier, a validity constraint ensures the chain ends at the final output metamodel to
conform to the problem specification. In fact, any TC concluding with a T having a target metamodel
other than finalOutputMM represents an infeasible chaining path. These intermediary solutions, however,
are maintained to be considered for further advancements and meanwhile marked as invalid to be later
omitted when deriving the final solution set.

Search Analyzer and Result Manager Through monitoring capabilities at runtime, experimental
setups in MOMoT are susceptible to clear-cut solution requirements and performance analysis. Information
on the search process is collected and processed in the Search Analyzer 9 to enable premature termination
settings, posing the option, e. g., prioritize finding a chain that yields no attribute loss. Under consideration
of multiple search optimization techniques, the MOEA framework is furthermore utilized to support
performance evaluation. Chaining solutions evolved by different algorithms can be ranked using dedicated
indicators like Hypervolume or Generational Distance. By default, they are computed post-search with
respect to the Pareto set holding the objective trade-offs. As a result, the best searcher can be established
for the chain selection task with the support of statistical tests.

Upon search termination, the Result Manager 10 provides listings of the best found selection operations
and therewith resulting output models, along with the optimal chains (TC) respective quality criteria. While
the ordered Henshin unit instantiations leading to founding chains and objectives are provided as textual
output, the transformed model conforms with the metamodel Figure 16 is persisted as (.xmi) model. Hence
the chain transformation steps can be traversed programmatically and become subject to post-processing
steps. This raises further options, such as the immediate transformation of a model based according to
one of the found chains, visualization of identified chaining paths with further details, and additional
analysis effort. Indeed, we can extract the chains and depict them and add objective annotations for
each mapping/translation step. This allows for identifying bottlenecks in transformation quality, e. g., the
mapping definitions responsible for most lost features/attributes.

Result Utilizing the described concepts in terms of the problem specification and with a search config-
uration available, MOMoT’s search engine can finally be employed to determine feasible chaining solutions
as a matter of evolving the model instance. The output for the scenario described in Section 5.3 (c.f. Fig-
ure 14) is shown in Figure 19. It includes the Pareto set of transformation chains produced by each algorithm
and with respect to evaluated objectives, i. e., transformation coverage, complexity, and the transformation
steps, i. e., hops. Note that for the coverage, due to expressing a maximization target, the additive inverse
has to minimize. Therefore they are negative values in MOMoT. Moreover, the third available chain, Ch3,
is omitted from the output due to expressing a worse fitness in all respects. Apart from this, Ch1 and Ch2
have been determined by all three algorithms and depict optimal solutions depending on the intended use.
Accordingly, Ch2 (KM3→ JavaSource→ Table→ HTML→ XML) is lower in complexity than Ch3 whereas
Ch3 (KM3→ XML) has higher coverage and takes one transformation step only.

5.5 Experimenting and evaluating chain selection with MOMoT

In this section, we propose an evaluation of the approach based on two research questions:

• RQ1: Is the approach able to retrieve the best chain based on the user-defined objectives: coverage
criteria, complexity and number of hops?
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Figure 19: MOMoT results to compute the best transformation chain.

• RQ2: How the performance of the proposed approach is affected with respect to the size of the
repository and variations of the input?

In the following, we describe the experimental setup and discuss the results and threats to valid-
ity. All the experiments are run on a Windows 10 machine with 12 GB RAM that has i7-7500U CPU @
2.70 GHz-2.90 GHz. Some of the fixed search configurations are taken as follows. The population size of
the experiment is taken as 6, and the maximum evaluation is taken as 12. In order to calculate execution
time, we run the experiment 20 times for each of the considered algorithms, which as Random Search,
NSGA-II and NSGA-III.

Experimental Setup

In order to answer RQ1, we set up an experimental evaluation based on the ground truth established in [55].
In [55], the dataset used for the experimental evaluation is the same that we use in this paper. The graphical
representation of the dataset is depicted in Figure 14. We compare the results for best chains in [55] with the
proposed approach. We have used the same coverage formalization, and since the transformations used
in [55] are implemented with ATL, we have re-implemented the same transformations as ETL modules.
The entire corpus of transformations, models and metamodels is available on GitHub18.

Results

The results of the first experiment that answers RQ1 are reported in Table 6.

Chain Coverage Complexity Number of hops
Ch1 0.001175 388 5
Ch2 0.004820 173 4
Ch3 0.49123 247 1

Table 6: Results for RQ1.

For each chain identified by the approach, the best chain, selected based on the maximum coverage
value only, is chain Ch3 with 0.49123, as in the ground truth in [55].

By also considering complexity and number of hops, the approach would consider minimum complexity
with the minimum number of hops. According to Table 6, chain Ch2 has minimum complexity (173) and
chain Ch3 has minimum number of transformation hops, i. e., 1. Since chain Ch3 has the highest coverage
and the minimum number of hops, we can assume it to be the optimum transformation chain available,
considering the weights of the two quality (objective) criteria in our approach are the same. The weights
are given by the user based on chain quality requirements. For simplicity, we consider them equal.

In order to answer RQ2, we have run another experiment in which we have iteratively increased the
dataset from a single transformation to include the entire dataset used in the first experiment, varying
the given source and required target metamodels. This assures that the size of the repository changes
and the possible retrieved chains can vary too. We evaluate how the selection time for chains is affected

18https://github.com/lowcomote/chainselection momot/tree/master
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by also including different objective configurations. From Figure 22, it is shown that the coverage takes
much longer to be computed than the complexity. The transformation coverage is a static value that can be
calculated once, probably when a new transformation and related metamodels are added to the repository.
Therefore, in order to reduce the overall execution time, coverage values of all the transformations are
stored in a separate model and are retrieved during fitness calculation by MOMoT when necessary. This
does not ultimately affect the results, but the computational costs for transformation coverages get reduced
to a single execution.

The used objectives configuration (Oc) for this experiment are reported below:
Oc1: Min(Complexity) and Min(number of hops), i. e., Min(Complexity) and Min(#hops);
Oc2: Max(Coverage) and Min(#hops);
Oc3: Max(Coverage) and Min(Complexity);
Oc4: Max(Coverage) and Min(Complexity) and Min(#hops).

The results of the second experiment are reported in Table 7 and summarized in the chart in Figure 20.

Input Selection time in sec
Data Source Target Available chains Hops Oc1 Oc2 Oc3 Oc4
url119 KM3 XML [KM3,Ecore,Java,Table,HTML,XML], [KM3,Java,Table,HTML,XML], [KM3,XML] [5,4,1] 16.23 11.35 23.84 20.95

url220 KM3 XML [KM3,Ecore,Java,Table,HTML,XML], [KM3,XML] [5,1] 12.03 8.94 20.53 19.88

url321 KM3 XML [KM3,Ecore,Java,Table,HTML,XML], [KM3,Java,Table,HTML,XML] [5,4] 18.39 15.49 30.84 29.52

url422 KM3 XML [KM3,Ecore,Java,Table,HTML,XML] [5] 18.95 17.13 38.20 38.01

url519 KM3 Table [KM3,Ecore,Java,Table] [KM3,Java,Table] [3,2] 11.22 8.29 24.07 21.77

url619 Ecore Table [Ecore,Java,Table] [2] 10.95 7.94 21.44 17.35

url719 Ecore XML [Ecore,Java,Table,HTML,XML] [4] 13.86 12.49 31.50 31.10

Table 7: Results for RQ2.

The first column in Table 7 provides the link to the GitHub repository in which the variations of
the dataset are stored in separate folders. The given source metamodel and required target metamodel,
influencing the column available chains is given in the second and the third columns of the table. The
fourth column reports the set of the number of hops of a particular chain. The last columns report the
chain selection time in seconds executed by our approach for the four different options of objectives. The
execution time of the chain selection in MOMoT depends on transformations involved in the available
chains. For example, a chain with ten intermediate transformations is detected slower in MOMoT than
three chains with three intermediate transformations each. This execution time is calculated by running
the MOMoT search 20 times and then taking the average value of those timings.

Figure 20 shows the execution time of MOMoT framework to run on different objective configurations
considering varied datasets. The Figure 21 shows that the objective configuration Oc3 took longer time to
be executed followed by Oc4, Oc2 and Oc1 sequentially. This time difference between Oc3 and Oc4 is that
the configuration Oc4 contains the calculation of the number of hops in an almost negligible transformation
chain. This property is highlighted in Figure 21 where the average execution time for objective configuration
Oc3 is a little bit higher than Oc4 when compared to different datasets as shown in Figure 20. In the objective
configuration Oc3, the coverage and the complexity are calculated for all the iterations in order to compute
the MOMoT search. Whereas, in objective configuration Oc4, the quick number of hops is computed within
the solution model along with coverage and criteria objectives. Calculating coverage and complexity take
a longer time, as it is shown in the Figure 21. This means that Oc1 and Oc2 takes much less time than Oc3
and Oc4. Also, calculating coverage is a much more expensive operation than calculating complexity, as
shown in the Figure 22. The coverage and the complexity values are stored in the problem metamodel (as
shown in the Figure 16), which is used in MOMoT search to find out the optimal chain based on the sets of
these two objective criteria along with the number of hops in a transformation chain.

Figure 20 also highlights that datasets url3, url4 and url7 take longer execution time, followed by url1,
url2, url5 and url6. The difference in their execution time is a result of the varying number of hops between
all the possible chains from the source metamodel to the target metamodel, as shown in the Figure 14. In
this figure, it is shown that there are three possible transformation chains with 5, 4 and 1 transformation
hops. Therefore, considering the number of iterations run by MOMoT, it is evident that chains with 5 and
4 hops (such as in url3, url4 and url7) take approximately equal or longer time to execute than the other
set of transformations. This is because, in each iteration used in an algorithm in MOMoT, there has to be a
multiple counting of the objective criteria for each of the numerous transformations in the chain. Also, it
can be explained that the other URLs, such as the one with 3, 2 and 1 hop, takes lower execution time as
compared to the higher number of hops within a transformation chain. Thus, it is evident that the longer
transformation chain would take more execution time, and it doesn’t depend on the number of possible
chains that transform the source model to the target model. The size of such a possible chain is shown in

19https://github.com/lowcomote/chainselection momot/tree/master
20https://github.com/lowcomote/chainselection momot/tree/master2
21https://github.com/lowcomote/chainselection momot/tree/master3
22https://github.com/lowcomote/chainselection momot/tree/master4
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the second column of the Table 7, which indicates a varying execution time without any relation to the
known size of the possible chains.

Threats to validity

In this section, we discuss the threats to the validity of our experiments by distinguishing them between
internal and external.

Internal Validity Such threats are the factors that could have influenced the final results of the per-
formed experiments. We attempted to avoid any bias in the definition of the quality criteria, we have used
them since they can influence the chain selection. To mitigate this possible threat, we have considered the
same coverage formalization as in the ground truth paper [57, 55]. Moreover, we have built our dataset by
translating the existing transformations in the dataset in [55] from ATL to ETL. This can include different
transformation constructs used by the two transformation languages, e. g., operations in ETL vs helpers in
ATL. We think that using only declarative aspects of both the transformation languages would limit this
threat of varying quality criteria between ATL and ETL files. However, we have written almost syntactical
equivalent ATL constructs into the ETL file.

We are aware that we have used a relatively small dataset of transformations, but it is based on real
transformations with very different complexity, definitions, constructs and domains of application. We
have also tried to mitigate this aspect by applying a mutation of the dataset, which is the result of changing
the required input and artefacts included in the repository. The datasets need to be expanded, as well
as further objectives can be added, such as model coverages, similarities between the metamodel, etc.
These parameters for MOMoT would be tested to identify the importance of intelligent algorithms such as
NSGA-II and NSGA-III over the Random descent algorithm.

External Validity The external validity discusses whether we can generalize our results. The first
aspect we need to highlight is that the experiment has been based on an existing dataset of transformations,
which has been rebuilt starting from a snapshot of the ATL transformation zoo [69]. The second aspect we
need to discuss is that our approach is based on ETL transformations static analysis, but the approach is
completely generalizable to other transformation languages on which quality criteria can be defined. To
confirm that in the first experiment, we have compared the coverage-based selection with the paper in [55],
where the transformations were defined with ATL. We mitigated this aspect by also having modularized the
static analyzer of the transformation that can be replaced with another one in order to create the repository
model. Moreover, in our approach, the static analysis23 operates with a pre-requisite that the ETL module
must contain the source and the target metamodels’ linked in the header of the transformation. This avoids
extra operations to retrieve the graph of the possible chains. We think that this threat is not influencing the
results of the experiments since, by using the approaches presented in [63, 70], the recovery of the existing
chains is possible with multiple technologies.

5.6 A motivating example of model transformation chain optimization

In this section, we introduce the tools and the languages used for the demonstration of the proposed
approach. Model transformations are the heart and soul of MDE. Model-to-model (M2M) transformations
transform a source model into a target model in the same or different abstraction level, whereas model-to-
text transformations transform models into source code or generically text. In this paper, we concentrate
on M2M transformations.

ETL 24, is the transformation language for model transformation tasks provided by the Epsilon family [5].
ETL takes in a number of source models and transforms them into a number of target models. An ETL
module can contain a number of transformation rules which transform a source model element to one or
more target model elements. An ETL module can also have pre and post-block to be executed before and
after the execution of transformation rules, respectively. Every rule is composed of an internal body in
which the user can specify the bindings. Binding is used to set the features of an instance transformed
by the current rule by using the values of the features of the source instance. This aspect is mostly
supported by the declarative nature of the transformation language, even if the user can also use imperative
constructs. In order to support reuse and maintainability, model transformations can be composed as small
transformation modules in order to get a larger transformation. The composition can be external or internal.
External composition deals with composing model transformations together by passing models from one
transformation to another. Internal composes two model transformation definitions into one new model
transformation, expressed in the same transformation language [71, 72]. The external composition can
be enabled if some pre-requirements are respected, e. g., the target metamodel of a transformation T1 is
contained, or it is the same as the source metamodel of T2.

23https://github.com/epsilonlabs/static-analysis
24https://www.eclipse.org/epsilon/doc/etl/
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In general, the steps executed to compose transformation chains are multiple [55]. The input model
and the required output metamodel are given as user input. In order to get the required output model,
the activities are (i) identification of available transformation chains, (ii) selection of one of the chains
(by considering user-based preferences or quality parameters), and (iii) execution of the entire chain of
transformations.

In a transformation chaining scenario, as the one represented in Figure 23, we have the criteria to chain
the three existing transformations, i. e., A2B and B2C satisfied, giving place to a chain C1 = A2B→ B2C.

A B C

A1

A2

B1

B2

C1

C2

A2B B2C

TR1

TR2

TR3

A Metamodel B Metamodel C Metamodel

TransformationRule

Transformation

Metamodel

Model Element

Legend

Figure 23: An example model transformation chain.

Transformation A2B is composed of two transformation rules TR1 and TR2.TR1 transforms metaclass
A1 instances into B1 instances, while TR2 transforms A2 instances to B2 instances. Transformation B2C has
one transformation rule TR3 that transforms B1 model elements to C1 model elements. Now, if we analyze
chain C1 from start to end, we can notice that rule TR2 is generating B2 model elements which are not
propagated in the final transformation B2C, since there is not a specific rule matching B2 elements.

In this case, the available chain is only one, i. e., C1, then given a model conforming to metamodel A,
the chain can be executed to get in output a model conforming to metamodel C. If we execute the chain
by composing the two transformations, all the rules and bindings in the transformations will be executed
by trying to match all the elements declared in the transformations chain, even if they are not propagated
by the intermediate or following transformation. For instance, in this case, the first transformation will
execute rule TR2, producing elements, even if in the following transformation TR3, elements of type B2
are not considered nor propagated. This might cost an unnecessary burden in terms of execution time,
especially in larger chains. This case is quite trivial for sake of simplicity, but it could be the case of complex
transformations, in which multiple rules are declared, and multiple transformations are composed. This
leads to the need for an optimization phase that can be performed before running the chain, and we propose
this in the following section.
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Figure 24: Proposed approach.
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5.7 Approach: Chain execution optimization with Epsilon

In this section, we propose an extension of the architecture proposed in [55] and illustrated in Figure 24
that is able to optimize the selected chain of transformations before running it. The expected benefits for
this application are in terms of memory allocation and, thus, reduction of the execution time.

The architecture proposed in [55] is composed of the components in grey, whereas the yellow ones
have been added to support the optimization. The user input is composed of three elements: 1) a model
repository (that might also be a local folder containing modelling artefacts, 2) an input model and a 3)
required output metamodel. The Chain Discoverer 1 is the component that, given the user input, explores
the graph-based representation of the repository looking for available transformation chains satisfying the
user request. If multiple chains are available, the Chain Selector selects one of the available chains by using
user preferences, criteria or directly the user selection. If only one chain is available for that request, 2 is
skipped. When the approach has the selected chain, it can be executed to return the model in output, but
a new component is then invoked, i. e., the Chain Optimizer 4 , that is in charge of optimizing the selected
chain using the Static Analyser 3 and pass it to the Chain Executor 5 that will run the chain and save the
output model.

In the following, we detail the optimization phase and explore the components used for this purpose.
The optimization that we propose executes only those transformation constructs that are needed and
propagated to the intermediate model elements, which are required to generate target model elements.
This concept is illustrated in Figure 23, where we showed that rule TR2 is not needed since the chain at
the second step does not consider the target metaclass of that rule. This concept can be easily extended
to internal bindings of the rules. The required rules are derived based on the extracted typed information
from the Static analyzer component 3 . The main idea is to analyze the transformation and then the entire
chain from the initial source to the final target. The static analyzer is a helper module based on Java
and Epsilon, which allows interaction with a model transformation as a model, so it can be queried and
managed by using EOL scripts. For every transformation rule, it is checked if the target parameter(s)
of the source model is the source parameter of any rule in the next intermediate or target model. Only
the matched transformation rule is chosen to be the required rule. Otherwise, that transformation rule is
removed from the transformation to speed up the execution. We can extend this logic to every statement
of the transformation rule in which the transformed reference and attributes of a particular metaclass are
checked to be present in the next transformation, i. e., a binding. Alternatively, if the transformed element
is not present in the next transformation, then that particular statement of the rule is deleted.

The static analyzer first invokes an algorithm, presented in [73], in charge of building the dependency
graph between the rules based on the equivalent(s) operator used in a statement of the considered rule.
The equivalent operator is a built-in operator of ETL which automatically resolves source elements to their
transformed counterparts in the target models. The output of this algorithm gives the HashMap in which
the key contains all the rules in a given transformation while the values contain the dependent rule(s) of the
corresponding keys(rules).

The HashMap output of this Algorithm is the input for the Algorithm 1 that traverses each statement
of the given rule in the transformation file.

This algorithm checks the target bindings of a statement in a transformation and compares it with the
source bindings of the next transformation. If the target binding (in a transformation) matches with the
source binding (in the next transformation), we can store it in RulesToKeep array. Otherwise, we can store
it in RulesToDelete array. The Algorithm 1 now checks the values given in the HashMap and compare it
with the values stored in RulesToDelete array. If they are equal, then the reference of the current rules
from RulesToDelete array will be removed from it. Otherwise, the current rules are not dependent on
any other rule; therefore, such a rule can be part of the RulesToDelete array so that it can later be deleted
to optimize the overall transformation chain.

One challenging thing here is that sometimes some rules would be altering the required model elements.
The use of ”equivalent” expression in the Epsilon Transformation Language would refer to a transformation
rule that shows some dependency between two or more rules of a model transformation. To handle this
issue, we propose to construct a dependency graph to find out such rules and will perform the program
rewriting after analyzing the dependency graph.

The logic of this optimization stage is shown in the algorithm in Algorithm 1. This algorithm checks if
a model element (attribute or reference) in a particular input pattern or binding of a transformation rule of
the current transformation is used in any transformation rule of the next transformation. Once the chain
is optimized, we calculate the number of bindings in the rules of the optimized transformation. If there
are no bindings in the rules of an optimized transformation, then that rule is deleted from the optimized
transformation. If the binding in the current transformation is not used in the next transformation, then
this binding will be deleted as it is unused for that specific couple of transformations. Once all the unused
bindings from transformations are removed, we have the optimized transformation chain, which will be
executed to retrieve the same result with lesser execution time.

Finally, the rewritten transformations containing only the required transformation rules are executed
within a chain of model transformations.
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Algorithm 1 Pseudocode for optimization of transformation chains.

1: procedure Optimize(HashMap hm)
Require: DG = Dependency Graph given in FindDependencyGraph(a)

2: Let a = chain containing transformations a0, a1, ..., an
3: Traverse each transformation in the given chain a
4: Take consecutive pairs of transformations from the end to start of the chain (an, an − 1)
5: Source = an − 1
6: Target = an
7: BindingsToDelete, BindingsToKeep . Arrays for keeping the bindings that need to be removed and

the bindings to keep, respectively
8: for all rule=rules in Source do
9: for all binding=bindings in rule do

10: re f type = EReferenceType of binding
11: TP = types of target parameters of the binding in the rule in transformation a(i − 1)
12: SPs = types of source parameters of the binding in the rule in the transformation ai
13: dependent rule = values given in key rule stored in HashMap hm
14: if SPs equals TP then
15: add binding in BindingsToKeep
16: else
17: if re f type = dependent rule then
18: add binding in BindingsToKeep
19: else
20: add binding in BindingsToDelete
21: remove binding from Source
22: if (#binding in the rule = 0) then
23: delete rule

5.8 Experimenting and evaluating model transformation chain optimization

In this section, we evaluate the approach by answering the following research questions:
• RQ1: Is the approach able to produce correct results w.r.t. non-optimized chains?
• RQ2: Is the approach effective in optimizing the execution time of the available chains varying model

size or transformation chain hops?

Experimental Setup

The experiment is based on a case study borrowed from [55], KM3→ XML and reported in the dataset on
GitHub25. The case study is composed of 6 metamodels and 7 transformations. The user request is made
of given a KM3 model and requests an XML model as output; the repository is represented in Figure 25.

Figure 25: Graph-based representation of the KM32XML experiment.

We have executed the approach on this case study by providing the user request, i. e., the initial model
and required metamodel, as well as the repository of the case study. We executed the available chains 10
times and measured the average of those runs. We reported all the execution times and calculated the entire
chain execution time with/without the optimization component. If more than one chains were available for

25https://github.com/lowcomote/chain-optimisation
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the case study, we calculated all the possible chains for both versions, optimized and unoptimized. If the
results showed an improvement in terms of execution time, we compare the resulting models produced by
the two executions in order to check if the models are exactly the same. This would confirm that the approach
is able to optimize the execution based only on the removal of unneeded constructs of the transformation.
This demonstrates the correctness of the implemented optimization algorithm. In order to compare the
output models, we have used EMFCompare [74] to automate the tasks, and we inspected the results to
confirm that the two models are exactly the same. If the models are the same, we can check the execution
time. Otherwise, we mark the result of the transformation chain as unexpected. Also, the cache memory
to load the EMF models has not been considered in order to exclude possible wrong evaluations based on
caching features. The models used for the experiments are original models provided by the case study and
a set of randomly generated models. The generated models are obtained by using EMG [75], which is the
Epsilon Model Generation language supporting the semi-automated generation of models. With this tool, it
is possible to create instances of metaclasses in the metamodel(s), assign values to the instance’s attributes,
and create links between instances to assign values to references. We generated 50 models for each case
study to have in total of 102 models to test the approach with different-sized models. The experiments are
run on a Windows 10 machine with 12 GB RAM that has i7-7500U CPU @ 2.70 GHz-2.90 GHz.

Execution time
Unoptimized Optimized

Input model Size Ch1 Ch2 Ch1 Ch2

original 4 788 5.99 0.49 5.81 0.39
generated #1 1,150 10.76 3.36 8.90 3.13
generated #2 2,300 15.69 3.84 14.14 3.02
generated #3 3,450 19.98 4.10 18.61 4.47
generated #4 4,600 26.85 4.57 24.71 3.30
generated #5 5,750 36.433 3.96 33.69 4.61
generated #6 6,300 48.92 5.20 44.32 4.0
generated #7 7,450 61.0 4.83 58.21 4.25
generated #8 9,200 70.79 5.44 62.97 4.15
generated #9 10,350 91.79 5.62 87.03 4.39
generated #10 11,500 110.22 5.36 85.23 4.95
generated #11 13,800 116.43 5.29 103.83 4.37
generated #12 16,100 139.87 7.06 133.32 6.10
generated #13 18,400 133.07 5.82 130.85 5.21
generated #14 20,700 262.09 6.15 248.66 5.98
generated #15 23,000 221.18 7.94 216.53 7.57
generated #16 27,600 309.70 10.24 292.42 9.05
generated #17 32,200 416.54 11.17 392.56 10.81
generated #18 36,800 882.66 13.73 815.137 10.99
generated #19 41,400 1,033.70 16.53 1,005.30 13.73
generated #20 46,000 1,379.26 15.71 1,283.45 14.70

Table 8: Results for the KM32XML experiment.

Results

In this subsection, we discuss the obtained results of our experiments by graphically reporting the results
for the first model (original) used as input, and the complete results are reported in Table 8. First of all, the
resulting models with the optimized and unoptimized components resulted in exactly the same, positively
confirming RQ1 and letting us proceed with the evaluation of the results for RQ2.

The experiment for the original model is reported in the first row of Table 8, and based on the user
input, two available chains are returned by the algorithm:

CH1: KM3→ EMF→ JavaSource→ Table→ HTML→ XML
CH2: KM3→ JavaSource→ Table→ HTML→ XML

Chains C1 and C2 have been executed for 20 model sizes. The optimized chain C1 gives better results
(less execution time) than the normal chain. There are some exceptions in calculating the optimized chain
(C2) compared to the normal chain. However, the average and median values of the optimized chain would
be less than those of the normal chain.
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We reported the execution time for the entire chains on the last node as well. The result confirms a 6.06%
reduction in execution time on C1 and 10.99% on C2. The results confirm that the approach has been able
to optimize the execution time, still producing correct models on the output, confirming the conclusions
foreseen for RQ1 and RQ2.

Threats to validity

In this section, we discuss the internal and external threats to validity.

Internal threats Internal threats are aspects influencing the results of the evaluation. One of the aspects
that need to be mentioned is that not all the transformation constructs are considered in the analysis. The
operation in ETL files are not considered for optimizing the transformation chain. Moreover, executing
transformation chains on a single machine can be influenced by other tasks in execution. For this reason, we
executed the chains for both the unoptimized and optimized version 10 times with multiple runs, and we
used the average of the results. As optimization is defined as the use of structural elements in the binding
of the transformation to the binding of the next transformation, it is henceforth evident that there won’t be
any optimization case for the last transformation in a chain or even in the case of the direct transformation.
The dataset of models used for the experiment is composed of 50 models, which could be seen as a limited
size for a dataset, but it is quite hard to find online resources in which we have model transformations and
available chains of them. For this reason, we tried to mitigate this threat by randomly generating models
from a given seed model. Future work will include a more extended experiment with other chains and a
bigger generated dataset of input models. The larger datasets need to be used to compare the execution
time of the optimized and unoptimized transformation chains.

External threats The external factors influencing the conducted experiment’s validity outside the
used setting are multiple. We tested the approach on the Epsilon framework, and specifically with ETL
transformations, but the generalizability of the approach is based on the fact that ETL is a declarative
rule-based transformation language, and thus all transformation languages falling in this category are
candidates for applying this approach. The static analyzer must be re-implemented in order to be able to
analyze other types of transformations, e. g., ATL.

5.9 Related work

This subsection elaborates on the related works on the composition of model transformation, quality criteria
in model transformation, search-based approaches in model transformation and how the execution of model
transformations was optimized.

Model transformation composition approaches

Basciani et al. (2018a, 2018b) [55, 57] took user input as source model and target metamodel. It can be
described as retrieving source metamodel and detecting all the available chain transformations. Then,
find out the best chain transformation by calculating the optimal coverage of every chain transformation
and information loss in a customized Dijkstra algorithm for every chain transformation. The processes in
this method are (i) finding the source model and target meta-model. (ii) Finding available transformation
chain lists. (iii) Select the optimal chain and execute it. Steps (ii) and (iii) comprise Model Transformation
Composition Language (MTCL).
Basciani et al. [76] took user input as the source model and target metamodel. It can be described as
retrieving source metamodel and discovering all possible chain transformations. It checks if the source and
target metamodels are incompatible, and then an intermediate adapter is automatically generated to fill
the gap between the inconsistencies between the metamodels. The processes in this method are (i) finding
the source model and target meta-model. (ii) Build MTCL by creating an intermediate adapter between
incompatible metamodels.
Etien et al. [77] took user input as very large models based on UML, Ecore, etc. It can be described as
decomposing the models based on the separation of concerns and then using localized transformation to
check the desired outcomes according to the objectives of the application. The processes in this method are
(i) finding out the granularities of the large model. (ii) Build localized transformations and combine those
transformations with the help of MTCL.
Aranega et al. [78] took user input as large models. It can be described as preparing feature models by
dividing the business logic of a group of elements of a model. These feature models are used to automate
the consistent set of model transformations and generate an executable chain of model transformations to
implement the desired objectives. The processes in this method are (i) finding out the granularities of the
large model. (ii) Build MTCL for a consistent set of model transformation chains.
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Etien et al. [71] took user input as model transformation chains. It can be described as determining
which chaining of the model transformation gives the desired result by determining pre-conditions, post-
conditions, and behaviour of individual rules of different model transformations. Commutativity of the
chaining of model transformations is also used to detect identical results by using both sides of the trans-
formation. The process of this method is to find out the best possible model transformation chain.
Etien et al. [79] took user input as a model. It can be described as combining independent model transfor-
mations that jointly work to achieve the same objective that does not handle compatible source and target
metamodels. The process in this method is to build MTCL for independent model transformation with
incompatible metamodels.
Wagelaar et al. [80, 81] took user input as two model transformation languages (ATL and QVT-R). It can
be described as proposing an internal composition technique called model superimposition that allows for
extending and overriding rules in different transformation modules that provide executable semantics and
proper implementation in one of the model transformation languages. The process in this method is to
build the internal composition of model transformation.
Chenouard et al. [82] took user input as model transformation chains. It can be described as automatically
discovering some more detailed information so that the actual complete chaining constraints can be fulfilled
by statically analyzing transformation. This method aims to find out the best transformation chain by
statically analyzing the transformation that comprises MTCL.
Rivera et al. [83] took user input as models and model transformations. It can be described as introducing
a graphical executable language for orchestrating ATL transformation to modularize the transformation
composition based on some mechanism and execute the chaining of model transformation. The process in
this method is to find out proper mechanisms such as conditional, parallel, and looping of transformation
composition for identifying the appropriate output model known as Orchestration Engine.
Vanfooff et al. [84] took user input as metamodel. It can be described as proposing metamodels for a
transformation chain modelling language that enables the implementation-independent composition of
transformations in the concrete syntax based on the UML activity diagram. This composition of transfor-
mation chains can be applied to the models used to implement a concrete implementation of the desired
result. The process in this method is to create metamodels that support transformation chains modelling
language that comprise an MTCL.
As a future goal, a parallel distributed cloud-based environment is envisioned to perform the model
transformation and its composition. For a system to be scalable, all the involved artefacts, such as model
transformations, need to be available in a distributed manner so that a user can efficiently access any
reusable artefact according to their needs from remote locations.

Quality criteria in model transformation

Syriani et al. [85] elaborated on the design pattern in the context of model transformation that satisfies
quality criteria identified before the execution of the transformation. The quality criteria identified to assess
and validate the model transformation design pattern are correctness, re-usability, efficiency, reliability,
maintainability and interoperability. The verification and validation done on the design patterns allow for
assessing whether the catalogued design patterns are complete with respect to the quality criteria. This
helps to detect bad design and improve the design pattern of a model transformation.

Selimet al. [86] elaborated on transformation testing, which is used to estimate the quality criteria of
the model transformation. Some of the estimated quality criteria which are considered for transformation
testing are metamodel coverage, input contract coverage of the model transformation, etc. These quality
criteria are calculated using mutation analysis which computes the value of quality criteria of the original
model and compares it with the value of quality criteria when the model is mutated or changed.

Bauer et al. [87] presented a coverage analysis approach to measure the test suite quality for model
transformation chains. Their approach combines different coverage criteria such as class coverage, attribute
coverage, association coverage, feature coverage and transformation contract coverage. The combination of
these coverage metrics gives detailed coverage information that is used to identify missing and redundant
test cases of model transformation or model transformation chains.

Erginet al. [88], a new model transformation design pattern is introduced that improves the quality of
model transformation. The design pattern focuses on three quality metrics of the transformation. They
are the number of rule applications, the size of the rule and the number of auxiliary elements. These three
metrics are related to the efficiency quality criteria, and therefore, improvements in these metrics would
lead to the reduction of time complexity. This paper finds out that the normal usage of these metrics would
lead to quadratic time complexity while the improved solution would lead to linear time complexity.

Mkaouer et al. [89] elaborated on the objectives of the model transformation, which are to provide rules
that generate the target model without any error and to minimize the complexity of the transformation
rules (by reducing the number of rules and bindings in the same rule) while maximizing the quality of the
target models. This paper focuses on the transformation mechanism as a multi-objective problem in order
to find the best rules that maximize the target model quality and minimize the rule complexity. The quality
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of the transformation rules and bindings is iteratively improved by using the multi-objective optimization
process. The objectives are the number of rules and matching metamodels in each rule and assessing
the quality of generated target models using a set of quality metrics. An optimization algorithm such
as NSGA-II is used to automatically generate the best transformation rules satisfying the two conflicting
objectives. By achieving the best possible solution with two conflicting objectives, the paper claims to
provide a well-organized target model with a minimal set of rules.

Basciani et al. [55], two quality criteria such as transformation coverage and information loss, are
considered in a model transformation chain scenario where multiple chains are possible between the
source and the target model. A customized Dijkstra algorithm is used to individually consider the two
criteria that consider the best chain. Since the information loss is considered in the model generated, the
paper claims that information loss is a better quality criterion as compared to the transformation coverage,
which is considered by calculating the static element in the metamodel and the transformation without
considering the generated models.

Search-based approaches in model transformation

Kessentini et al. [90] framed a transformation technique as a combinatorial optimization problem where the
end goal is to find a better transformation that starts from a small set of available examples. The search-based
model transformation by example has been also further elaborated [91]. This approach is called model
transformation as optimization by example (MOTOE) that combines transformation blocks extracted from
examples in order to generate a target model. A modified version of particle swarm optimization (PSO)
is used where different transformation solutions are modelled as particles which exchange transformation
blocks to converge to achieve an optimal transformation solution.

Fleck et al. [92] identified the problem of modularizing a model transformation program and using
it as a model in an automated search-based approach. The application and the execution of the problem
are managed by the search framework that combines an in-place transformation language (in Henshin)
and using a search-based algorithm framework. This calculates the Pareto-optimal solution based on four
objectives or quality attributes. The four objectives are the number of modules in the transformation, the
difference between the lowest and highest number of responsibilities in a module, the cohesion ratio and the
coupling ratio. This approach uses MOMoT framework that can be used to model a problem, and by using
in-place transformation and search-based algorithm (such as NSGA-II, NSGA-III, etc.), a Pareto-optimal
solution is found based on minimization or maximization of the quality objectives.

Sahin et al. [93] proposed to handle model transformation testing as a bi-level optimization problem
which combines the generation of test cases with mutation testing. This paper divides the problem into
two parts: the upper level and the lower level. The upper-level problem generates a set of test cases
that are used to maximize the coverages of metamodels used and the errors introduced by the lower-level
problem to the transformation rules. This bi-level formulation of the problem provides a statistical analysis
of the obtained result that shows the competitiveness and the outperformance of the proposed approach as
compared to the precision over co-evolution and non-search-based methods.

Optimization of model transformation

Jordi Cabot et al. [94] propose a metric to measure the complexity of the OCL expression. The metric is
based on the syntactic structure of the expressions (number of referred attributes, number of navigations,
etc.) and on the constructs used in their definition (such as the number of forAll and select iterators). This
traversal of each expression to determine the number of objects involved in calculating the expressions
aims to give a precise complexity of the execution of an OCL expression.

Wimmer [95] have proposed an approach for parallel execution of model transformations along with
some optimisations both at the transformation level and at the OCL expression level using static analysis.
First, ordering of matched rules to identify the matched rule sooner. Second, the footprinting of the
transformations filters the model elements by only keeping the ones that are matched with any rule. Third,
handling bindings to be resolved at compile-time to speed up the execution at run-time. The fourth is to
make trace links reduction by only keeping track of those links that are to be used during the transformation.
This approach doesn’t take chain optimisation into account.

An approach compiles a subset of ATL code to generate efficient Java code [96]. A similar approach [97]
to enable incremental execution of model transformations uses partial evaluation to pre-compute a part of
model transformation.

Viatra [98] provides an incremental engine based on the RETE algorithm. The incremental engine of
Viatra computes the pattern matches and caches them, thus, executing the transformations efficiently. But
due to caching the memory consumption is high so you get a faster execution at the cost of more memory
consumption.
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6 Conclusion

In this deliverable, we introduced low-code development platforms (LCDPs) as the next-generation devel-
opment environments. These environments employ the recent practical advancements of MDE, with the
benefit of using models at higher abstraction levels to define complex software systems as fully operational
applications. We focused on model transformations as underpinning technologies and their requirements
for scalability and quick response time to meet the users’ needs.

In Section 2, we introduced SparkTE, a multi-paradigm, distributed model transformation engine in
Spark. SparkTE is based on Spark and allows users to express transformations with different approaches,
each having its benefits and drawbacks. We covered three main topics: (i) how expressions can be
evaluated in transformation rules, (ii) what semantics can be used and implemented to conduct a model
transformation, and (iii) what engineering choices in the design space of a distributed model transformation
engine.

In Section 3, we presented a benchmark framework to measure the performance of multi-parameter
Spark applications and find the best parametrization according to several goal metrics, e. g., execution time,
memory or disk use, network traffic, etc. We introduced the benchmark workflow and demonstrated its
applicability to a running example application. We measured the execution time and the memory use on a
cloud infrastructure (G5k) and found the best parametrization of the application in the given context. The
prototype implementation of the framework is open-source and available on GitHub26.

In Section 4, we presented a cloud-based model transformation, validation and verification workflow to
check the correctness of industrial systems engineering (SysML) models. The workflow adopts the hidden
formal method approach, i. e., (i) users provide the input models and the verifiable (checkable) property in
the SysML language they are familiar with; (ii) the details of the transformation and the formal verification
are hidden from the users; (iii) the verification results are returned in the original domain, on a SysML
sequence diagram. We demonstrated the approach and measured its scalability in the cloud (Amazon
Elastic Kubernetes Service) on a running example and an industrial model.

In Section 5, we elaborated on approaches for identifying, selecting and optimizing model transfor-
mation compositions. These steps enable the efficient composition of transformation chains by combining
several more minor transformations that are available in the model repository.

Future work

In future work for SparkTE, we will evaluate all the proposed features and their combinations. The purpose
will be to show how the combination of the different strategies can enhance, or diminish, the performance of
computation. The study will be based on two main criteria: computation time and memory use. Ideally, we
want to highlight that there is no single perfect configuration, but it depends on the use case, the execution
environment and the characteristics of input (e. g., model size, topology, and rule complexity).

We are planning to extend the multi-parameter benchmark framework to make it able to run the
measurements in parallel on different machines in the cluster. Thereby speeding up the overall execution
time of the benchmark workflow. Besides, we will experiment with different applications and advertise
the framework for a broader audience in the MDE and software engineering communities so that other
software engineers can also benefit from our work.

We will improve the performance of the cloud-based model transformation, validation and verification
workflow. One way to achieve this goal is to adopt the parallel-reactive model transformation proposed
in [9, 11]. It enables live, incremental model transformations, i. e., if the source model changes, then only
the impacted parts of the target model will change, which results in a shorter transformation time. Another
future work is to extend the supported set of SysML state machine and activity diagram elements to be able
to verify more complex models that are useful for systems engineers.

The presented model transformation composition method should be used on a larger dataset so that
many intelligent algorithms, such as NSGA-II, can find the best transformation chain. Also, several larger
models could be tested in order to compare the optimized and unoptimized transformation chains. These
approaches could be applied in a cloud-based model repository where the transformation chain can be
structured as a graph, and upon deletion or addition of any metamodel or model transformation, the newly
optimal transformation chain could be identified and selected. The graph data structure in the cloud-based
repository could also help manage chains of transformations on larger models.

26https://github.com/lowcomote/multi-parameter-benchmark
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Atl: A model transformation tool. Science of computer programming,
72(1-2):31–39, 2008.

[23] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. The ep-
silon object language (eol). In European Conference on Model Driven
Architecture-Foundations and Applications, pages 128–142. Springer,
2006.

[24] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, Ivan Kurtev, and
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