UNIVERSITE

4 . MSCA
/ / .& l O W C O m Ot e g Marie Skfodowska-Curie Actions
' MATHSTIC Institut Mines-Télécom

A Testing Framework for Executable
Domain-Specific Languages

Faezeh Khorram

IMT Atlantique
Reporters : Thesis director:
+ Prof. Anne ETIEN, Université de Lille, France « Prof. Gerson SUNYE, Nantes Université, France

» Prof. Juergen DINGEL, Queen’s University, Canada

Examiners:

» Prof. Benoit BAUDRY, KTH Royal Institute of Technology, Sweden
» Dr. Javier TROYA, Universidad de Malaga, Spain

» Prof. Antoine BEUGNARD, IMT Atlantique, France

Thesis supervisors:
* Dr. Jean-Marie MOTTU, Nantes Université, France
* Dr. Erwan BOUSSE, Nantes Université, France

Outline

Introduction

State-of-the-art

Contribution & Evaluation

Conclusion & Perspectives

Introduction

How to develop complex
software?

* Dealing with complexity of the
application domain

* Involving the stakeholders
with diverse knowledge and
expertise in the development
lifecycle

PHYSICAL ASSET

DATA

INFORMATION

DIGITAL TWIN

Model-Driven Engineering (MDE)

* A software development paradigm
* Uses models as the central artifact of software development

Static analysis

Documentation I - Reverse
Engineering
Refactoring/ Codle generation
Transformation
Automated
testing

Model
* an abstraction of an original system for a specific purpose
* reflects a relevant selection of the system’s properties
* usable in place of the system with respect to some purpose

Domain-Specific Language (DSLs) (e o)y

* Languages for the definition of
models,

* made for specific technical or
application domains,

Mendix Microflow DSL

. . | o s
* tailored to be used by domain T e e
eXp erts. : A microflow model i
Low-Code Development Platforms O e o

(LCDPs)

Paused mcrofon e

nnnnn

Behavioral models

* Representing dynamic aspects
of a system

* How to make sure if the model
behaves correctly?

We need to execute the model

State machine

Activity diagram

Contrib
SOTA ution

Business process

Arduino model

Executable Models o Y Y

* Models can be executed if the DSL Running the code generated by a compiler
provides an execution semantics o — A
refinemen
Model-to-model Model-to-text
Transformation Transformation

Running the model itself using an interpreter

execute it?

Early Dynamic Verification and Validation
(V&V) of models

Dynamic Verification of Executable Models

 What if the model execution is Running example: A basic intrusion alarm system
not as expected?

There is a defect in the model

* How to find the cause of - (it buttont == 1] N
. ? |f infrared sensor == 1
un-expected behavior: } ﬁ
Ghite RER= buzzer =1 buzzer =0 buzzer =0 buzzer=0j \white LED=0)

Testing executable models x

Testing Executable Models

Input: button pressed, sensor detected

* Testing is the primary method used
for evaluating software systems

Testing involves:

* executing systems in interesting
scenarios,

[if button1 ==1]

* observing whether they act as [}

expected. @# é_,é_,é_,é

white LED = 1 buzzer = 1 buzzer =0 buzzer =0 buzzer =0

How to define input and output? *

Expected output: LED turned on, M Execution output: LED turned on,

white LED = 0

buzzer turned on and off 2 times buzzer turned on and off once

Problem Statement o ez Yo

Roles:
- Language Engineer: defines an xDSL and tools for using it
- Domain Expert: user of the xDSL

4 Modeling Environment h
Modeling Editor
Language xDSL
Engineer)

conforms to

~

— uses .
i Behavioral " ‘ s Domain
——qaeiines
‘\ model Expert

10

Problem Statement =

- Given an xDSL, its domain experts can test the conforming models if the domain concepts can
be used in the specification of test cases
’ Challenge#1: Domain concepts differ from one xDSL to another

\ - -
o 4 Modeling Environment)
A
TSel - Modeling Editor
Language [~ -- > xDSL
Engineer)
conforms to
0 Beh Vi L : e Domain
_defines> [TShaviora Allows the domain expert { E
‘\ Y model .) ; xpert
to define test cases using /
: the domain concepts
"\ Testing Editor
i Test cases

Conclus
ion

11

Problem Statement

Contrib Conclus
SOTA ution ion

« Written test cases must be executed in unison with the models under test

« Test execution must be somehow connected to the model execution

’ Challenge#2: Model execution facilities differ from one xDSL to another

-~
-~
—
-~
-
—
-
—
o
o
o

Language
Engineer

~

“ —defines=

—
- -
—
—
-
-
-
-
-

Modeling Editor
xDSL

7y
conforms to

Beha'vioral
model

"\ Testing Editor

~| Test cases

Modeling Environment

-~

~
~
N

A

Model
Execution
Facilities

Test
Execution +«
Facilities

~

uses
JoTe—

Domain
Expert

Allows the domain

expert to run test
cases on the models

12

Problem Statement

Providing facilities to improve test efficiency:
» Evaluating whether the written test cases are good enough /

/

Contrib Conclus
SOTA ution ion

’ Challenge#3: dependency to testing
' frameworks as they need to directly
e manipulate test cases and their

* Diagnosing the faults when test cases fail on a model Pt
+ Improving the strength of the written test cases ~_.-~" system under test
e e

Language
Engineer

Pn

“ —defines—=

— o mm mm mm mm mm mm mm Em mm mm Em Em mm mm mm o mmy,

Modeling Editor
xDSL

7y
conforms to

Beha'vioral
model

"\ Testing Editor

~| Test cases

—— o o o o e e -

/M,odeling Environment

4 N
______________________ Voo

-

[
o Advanced
. Testing Facilities
Model L
= - Execution ' Test quality
Facilities | | measurement
r
| 1
D Test failure
Lo diagnosis
Test | i
Execution | Test
Facilites | . /mprovement

— o o e e o o - N e -

/uses
¢

Provides facilities for
the domain expert to
improve test efficiency

Domain
Expert

13

Problem Statement:

Diversity and Heterogeneity of xDSLs

 New xDSL = new domain concepts, new execution facilities
e Each time a new xDSL is engineered, a new testing framework must be created from

scratch

Language
Engineer

Pr

‘\ —defines=>

fModeling Edito

~

r

i o — o ———— ————

i

m Model
. Execution
conforms to TR
! Facilities
Behavioral
/1 _model
l’k)
. = \
Testing Editor Test
— Execution
esl cases) Facilities

N e o = ——

[
I
I
I
I
I
I
I
I
I
I
I

1
I
I
1
I
1
I
I
1
I
1
I
I
\

.)

Modeling Environment

__

Advanced
Testing Facilities

Test quality
measurement)

Test failure
diagnosis

é)

Test

Improvement
. J

e o - ———

~

Contrib Conclus
SOTA ution ion

uses)
e« Domain
Q‘ Expert

Solution: a systematic approach to provide testing support for every given xDSL

14

State-of-the-art: Considered features

DSL-Specific

Generic

Compiled
DSLs

Interpreted
DSLs

Model level

Code level

Domain
expert

Technical
Programmer

- T T -

Intro SOTA Cft?éﬂb

Modeling
Language

Programming
language

Test execution

Oracle
validation

Automatic
reporting

Quality
measurement

Test
debugging

Test
amplification

15

State-of-the-art: Q

13 approaChes N xDSL Testing Test Test Test Advanced
Scope ' . = Sl
Paper type level engineer language executability facilities
. " g <, & y 5 = -
Required features 2 | 3 . | E| 5| B glE| 8| |2
. 3 23] A 3 O Z ap S & 3 z = S
to overcome said £ Qg |3 | 4| & | &2 |F | 5|3 || 8| 3|E
Z Tl 8| |2 | B | 2|8 | 28|82 |48 |8e
challenges @ | 2| &R | &a|3| |2 |53 |2 |8| 38| 2|8|&8&|8| 8
3 ~ =) o o o = = -~ a0 4 < Q = P -
2, @) - 3 S o = S o % = = = 2 2
A|S|S|E|2|8|a|g|2 |&£|&|8|2|&|& &
Mens et al. [1“3] o o . .
I(lb?tl et al. [71} ° ° . ° . . . ° . . .
Hili et al. [T’E . °
Santiago et al. [124]
r Kos et al. [\4_] ° . ° B . . o . .
Lack of reusability < [Tubke and van
Lessen [97] g = > E < = 2 >
Lazar et al. [91]
Arnaud et al. [18]
Mijatov et al. [106]
Igbal et al. [74]
. -
Only for compiled DSLs | Wu et al. [152] . : ‘ ; " . ; v .
Onlyfor metamorphic testing { Canizares et al. [36]
No advanced facility <| Meyers et al. [107]

16

Proposal:
A generic testing framework for xDSLs

Users
. Enabling language engineers to provide testing support for their xDSLs
. Enabling domain experts to efficiently test behavioral models as early as possible

contributions: .. ft ..
o | Model Under Test |-} Test Cases | |
o TJest case definition for models Se— s A | Jefines
« Test execution on models conforms to conforms to |
. i) o : Domain
« Test quality measurement ; ; 8\ Expert
, | > Testing Language |
. Test debugging B ' : - uses
ngineer US:eS
. Test amplification for improvin 0 reads | re e e T
.p . P 5 ‘\ dernes> | XDSL jeoeoees [>I'est Quality Evaluator
regression testing i Test Debugger

blue == part of the defense presentation 17

Test Case Definition and

Execution

Chapter 3 of the manuscript

Executable Domain-Specific Languages (xDSLs)

- Abstract Syntax

Domain concepts and their
relationships

e defined in an Ecore metamodel

Running Example: an xDSL for
modeling and simulating Arduino
boards and their behaviors
(xArduino)

arduino

i

= Board
O..*I pins

- DigitalPin]

)

[0.1] I’nodule

=

"t Module

T name : EStr

ing

[0.*] boards ‘ [0.] sketches | g syetch

[0..1]|block

‘ % Instruction | [0-7] instructions’[= Block We

/,'[Z

—

= ModuleAssignment

(

[0.{1]

[1.1] module [1.1]

= LED

|

{ =l PushButton

nfraRedSensor

ET elseBlock
operand |

5 While g If].—
L

[1.1] condit{on [1 ..1Icondition

= Expression]

J Buzzer]
J

/
|
{m

)

Executable Domain-Specific Languages (xDSLs)

- Operational Semantics

a) Definition of runtime state

b) Execution rules: changing runtime state

to execute a model

< | Behavioral Interface (Optional):
How to interact with a running
model

dynamic

*H DigitalPin

7 level : EInt

)
<<imp:orts>>

Execution rules

execute(Block)
execute(If)

changelevel(DigitalPin)
press(PushButton)
release(PushButton)
detect(InfraRedSensor)

execute(ModuleAssignment)

Y

<<imple/inentedBy>>

BehavioralInterface ArduinoInterface

accepted event button_pressed: parameters =

accepted event button_released: parameters
accepted event IRSensor_detected: parameter
exposed event Pin_level changed: parameters

S

[button: PushButton]
[button: PushButton]
= [sensor: InfraRedSensor]
= [pin: DigitalPin]

20

SOTA

Defining Test Cases for Models

o
g8

Question: How to enable the domain experts to write test cases for

their behavioral models?

Answer: providing a testing language that meets three requirements:

1) Allows the use of the domain

concepts in defining test cases | Model Under Test D] Test ?ases | = |
2) Can launch the execution of the | !
conforms to conforms to |
mOdEI under test i SRR ¢ .. : Q‘Domain
Expert
3) Provides facilities to investigate L | D Testing Language |
anguage ' A uses
Engineer : US:eS g
whether the model under test - g | e
derness] X - :
behaves as expected @ - §l PTest Quality Evaluator 5
> Test Debugger é §
1> Test Amplifier AL

21

Candidate: Test Description Language [1]

Advantages of TDL:

v/ A standardized language for the specification of
test cases

v/ Not specific to any language (GPL or DSL)

v/ Designed as a simple language for testers

lacking programming knowledge, so a good fit
for domain experts

Intro

Contri Conclus
o @ ion

Test Configuration
defaultTC

TESTER
SS:defaultCT

sy

SUT
UE:defaultCT

TESTER
SS:defaultCT

L
g

SUT
UE:defaultCT
[

Request (sessionld := 1)

gl_J

alternative J

Accept (sessionld := 1)

[1] Makedonski, P., Adamis, G., Kaarik, M. et al. “Test descriptions with ETSI TDL”. Software Quality Journal, vol. 27, no.2 , 885-917 (2019) 22

Candidate: Test Description Language [1] Q

Challenges: o etaute
- The domain expert must first manually define S ¢ q] Ut
the required domain-specific concepts, and SSdetadter ; Y Ve detauiet
then write test cases
- No clear way to enable TDL test cases to S;E;;lﬁl?m UE;@HCT
execute models conforming to a DSL T e g
. . . Request (sessionld := 1)
- Relying on a simple representation of the :
expected behavior of the system under test aternative) Aot (smssiord =)
PASS

How to resolve the challenges of

using TDL for testing models?

[1] Makedonski, P., Adamis, G., Kaarik, M. et al. “Test descriptions with ETSI TDL”. Software Quality Journal, vol. 27, no.2 , 885-917 (2019) 23

Contributions

Adapting the standardized Test Description Language (TDL) to the
testing of executable models
 Cont#l. TDL Library Generator: generating a domain-specific TDL library

for each given xDSL to be used for writing test cases for the xDSL’s
conforming models

* Cont#2. TDL Interpreter : a test execution engine dedicated to running
TDL test cases on executable models

An Example TDL Test Case for the xArduino model &)

Using events of the behavioral interface and types of the abstract syntax and runtime state

definition to define test data

e testinput data and expected output are both a trace of events

SUT

(xArduino model)

Test
Component
BehavioralInterface ArduinoInterface a1 button_pressed (button1)
accepted event button_pressed: ' — _ - e
parameters = [button: PushButton] o pin_level_changed (whiteLedPin == 1)

accepted event button_released:
parameters = [button: PushButton]

IRSensor_detected (infrared sensor)

accepted event IRSensor_detected:

parameters = [sensor: InfraRedSensor]
exposed event Pin_level changed:

parameters = [pin: Pin]

>
pin_level_changed (buzzerPin == 1)
pin_level_changed (buzzerPin == 0)
pin_level_changed (buzzerPin == 1)

A A A A

pin_level changed (buzzerPin == 0)

Conclus
ion

25

TDL Library Generator DO

Language £) Domain €) |
Engineer runs Expert uses

 defines i Domain-Specific
B — b | > TDL Library Generator TDL Library
| xDSL ' e |
Abstract Svnt . __Meds DEcore to TDL _ xDSL-Specific
S rac* yntax .-~ Transformer Types Package
<<ext<iends>> (eadf, -7
Runtime state |~~~
definition |
Behavioral Interface
©
S | Generated User-provided Proposed depend
()
D artifact artifact [> Tool produces | epenency} 26
-

TDL Library Generator:

Contri Conclus
Intro SOTA @ ion

Ecore to TDL Transformation

[O..*{ pins

% Dtgttale

T name : EString

[0.*] boards

arduino
® Board

H Project |

\

® Instruction

[0.*] sketches @

[0.1]

= ModuleAssignment

|

[1.1] module

= LED { £l PushButton
L)

H Buzzer H H InfraRedSensor
Jil

[1.1] operand

[1.1] condit{on [1..1] condition

£ Expression

oy

3

<<extq'ands>>

dynamic

*H DigitalPin | A

7 level :

Eint

| Package xArduinoTypes {

)

Type Project (
boards of type Board,
sketches of type Sketch
) with {abstract;};
Type Board (pins of type DigitalPin) with {abstract;};
Type Sketch (block of type Block);
Type DigitalPin (

level of » EInt with {dynamic;},
module of t: Module
ith {abstract;};

Type Module (
_name of type EString
) with {abstract;};
Type PushButton extends Module();
Type InfraRedSensor extends Module();

27

TDL Library Generator DO

Language £) Domain €) |
Engineer runs Expert uses

defines i Domain-Specific
e xDVSL ____________________________ > TDL Library Generator TDL Library
reads DEcore to TDL xDSL-Specific
Abstrac:t Syntax N _.-"" Transformer " Types Package
: ; S -
<<extends>> % -7 L :
— el _[> Behavioral Interface . xDSL-Specific
Runtime state |, - s -7 to TDL Transformer Events Package
definition @ - TR -
Behavioral Interface " ’
= Generated User-provided Proposed
% artifact artifact > Tool produces dependency» e

TDL Library Generator: DODE
Behavioral Interface to TDL Transformation

| Package xArduinoEvents {
2 Import all from xArduinoTypes_r;

BehavioralInterface ArduinoInterface 4 Annotation AcceptedEvent;
accepted event button pressed: L B
6

parameters = [button: PushButton] 555557“> Type button_pressed (button of type PushButton)

accepted event button released: 8 with {AcceptedEvent;};
parameters = [button; PushButton] 9 Type button_released (button of type PushButton)
accepted event IRSensor detected: H wiih {Aceaptadivent; ,
11 Type IRSensor_detected (sensor of type InfraRedSensor)
parameters = [sensor: InfraRedSensor] |, with {AcceptedEvent;};
exposed event Pin_level changed: 13 » Type pin_Level Changed (pin of type DigitalPin)
parameters = [pin: Pin] 14 with {ExposedEvent;};

1 B
15 }

29

TDL Library Generator

Language £
Engineer runs
defines i
___________________________________ P > TDL Library Generator
xDSL e
Abstract Syntax <~ - Rigaollil EDEcore fo DL
; y .-~ Transformer
<<ext<§ands>> (eadf/ -7 L :
_ Pt > Behavioral Interface
Runtime state |- 45 -7 to TDL Transformer
deflnltlon . (e/// e e e i
. > TDL Code
Behavioral Interface “ 5[> Generator
€ | Generated |[U ded P d
5 enerate ser-provide fopose dependenc
> artifact artifact [> Tool produces __9¢ pendency .
—

Contri Conclus
Intro SOTA @ ion

Domain-Specific

TDL Library

xDSL-Specific
Types Package

xDSL-Specific
Events Package

Common
Package

Test Configuration
Package

30

Writing executable TDL test cases for models O
using the generated xArduino-specific TDL library

1 Package TestSuitedreactive {
™ 2 Import all from common;
Import all from xArduinoTypes_r;

Importing the generated TDL libra ry - ; Import all from xArduinoEvents;

Import all from testConfiguration_r;

7 //test data

H%Y H K InfraRedSensor IRSensor(_name = "infrared sensor");
Deflnlng mOdEI E|ement5 In TDL to 109 DigitalPin whiteLedPin (_name = "whiteLedPin", level =7);
be used as test data | PushButton buttonl (_name = "buttonl");

11 DigitalPin buzzerPin (_name = "buzzerPin", level =7);

13 //test cases
Test SUT 14 Test Description testl uses configuration xArduinoConfiguration r{
tester.reactiveGate sends button_pressed (

Component (xArduino model) 16 button = buttonl) to arduino.reactiveGate;

e button_pressed (button1) e 17 arduino.reactiveGate sends pin_Level Changed (

> 18 pin = whiteLedPin (level = ’1’)) to tester.reactiveGate;
pin_level changed (whiteLedPin == 1) tester.reactiveGate sends IRSensor_detected (
< sensor = IRSensor) to arduino.reactiveGate;
IRSensor_detected (infrared sensor) Azdnine geactivelare manqs po Lavel Changed |
= > pin = buzzer_pin (level = ’1’)) to tester.reactiveGate;
pin_level changed (buzzerPin == 1) 23 arduino.reactiveGate sends pin_Level Changed (
< - 24 pin = buzzer_pin (level = ’0’)) to tester.reactiveGate;
pin_level_changed (buzzerPin == 0) 25 arduino.reactiveGate sends pin_Level Changed (
& : 26 in = buzzer pin (level = ’1’)) to tester.reactiveGate;
. P _P
pin_level_changed (buzzerPin == 1) 27 arduino.reactiveGate sends pin_Level Changed (
pin_level_changed (buzzerPin == 0) 2R | pin = buzzer_pin (level = ’0’)) to tester.reactiveGate;
= 29
| | || 30 }

Conclus
ion

31

Running Test Cases on Models O

Proposing an operational semantics for TDL:

« Can run test cases on executable models

« Provides several facilities to interrogate the behavior of a model in its execution by a
test case

« Produces the test execution results

specific to
.| Model Under Test J«——’—) —————————— Test Cases J
Test SUT :,:. defines
Component (xArduino model) ! |
: : conforms to conforms to
™ button_pressed (button1) i OO OO R USSR OE O RO ORPRU RPN Domain
pin_level_changed (whiteLedPin == 1) | > ' ' Expert
' . | Testing Language | |
IRSensor_detected (infrared sensor) Language ' : \ : uses
Engineer : uses E
pin_level _changed (buzzerPin == 1) ~ S
— : DSL reads | 3
pin_level_changed (buzzerPin == 0) ‘\ —defines> X -1 PTest Quality Evaluator .
pin_level_changed (buzzerPin == 1) . k7 a:, i
| Il . EEa L (/)] 0
- P> Test Debugger o €
pin_level _changed (buzzerPin == 0) H 99 - n::S ¥
L Ll > Test Amplifier AL

(T e T T LT T I b 32

Contri Conclus

Intro SOTA bution o

TDL Interpreter

TDL Interpreter dependencies

The TDL Interpreter main loop
to external components

Input:
TDLInterpreter package: the TDL package containing the TDL test cases to be
[1] executionEngine [1] eventManager executed
<<interface>> <<interface>> 1 begin .
ExecutionEngine EventManager 2 foreach restcase € package.testCases do
3 testcase.configuration.activate
+ setUp(MUTPath, DSLPath) + setUp(MUTPath, DSLPath) ESLEaNCEOI FRUnGILONacivact)
+ executeModel() + processAcceptedEvent(event) 4 foreach behavior € testcase.behaviors do
+ setModelResource(resource) + getExposedEvent(event): Event 3 if behavior is Message then
+ getModelResource():Resource + sendStopEvent() P < OS] M U JU——
+ launchModelDebugger() 6 sourceGate eha .“ I.SOUrce
+ getExecutionTrace(): Trace 7 targetGate < behavi or.target
A OCLInterpreter 8 if sourceGate.component.role is Tester then
implements . [1] queryEngine — 9 request < behavior.argument
: + setUp ot e S ES NG saiies
<<abstract>> + runQuery(context, query) 10 | targetGate.sendRequestToSUT(request)
AbstractExecutionEngine - = e
- 11 else if sourceGate.component.role is SUT then
- MUTResource: Resource 12 testOracle < behavior.argument
13 targetGate.assert(test Oracle)
| | 14 else if behavior is <other behavior types> then
ALEEngine JavaEngine 15 L

33

Evaluation

Contri Conclus
Intro SOTA @ ion

* RQ#1: Does the approach provide testing facilities for xDSLs in which their abstract syntax is
designed for different domains?

 RQ#2: Does the approach provide testing facilities for xDSLs in which their operational
semantics is implemented using different metaprogramming approaches?

xDSL
size

Tested
Models

XFSM XBPMN | xMiniJava | xArduino XPSSM
Abstract syntax size (# EClasses) 3 39 76 59 39
L K3:110 ALE: K3:
Semantics size (LoC) ALE: 90 318 1042 K3:768 K3:975
Number of tested Models 5 2 6 6 5+ 60
Size range of tested models (# EObjects) 7-133 26-46 31-571 18-59 13-154

34

Evaluation Result

Intro SOTA Cor:'tn
bution

RQ#1: Does the approach provide testing facilities for xDSLs in which their abstract syntax is

designed for different domains?

RQ#2: Does the approach provide testing facilities for xDSLs in which their operational
semantics is implemented using different metaprogramming approaches?

xDSL
size

Tested

Models

Test
Artifacts

XFSM XBPMN | xMiniJava | xArduino XPSSM
Abstract syntax size (# EClasses) 3 39 76 59 39
Semantics size (LoC) ,I:3LE1;8 inES 1';1'2 K3:768 K3: 975
Number of tested Models 5 2 6 6 5+60
Size range of tested models (# EObjects) 7-133 26-46 31-571 18-59 13-154
TDL Library size (LoC generated) 76 170 189 251 203
Total n. of test cases 45 6 77 22 216
Size range of test suites (LoC) 50-157 33-50 33-188 30-132 25-1311

Conclus
ion

35

Test Improvement

Chapter 5 of the manuscript

Limits of Manually Written Test Suite O
for Regression Testing

. Testing a model ensure the correctness of its current version, but the

model may be affected by faults in future updates

Test SUT
Component (xArduino model)
- button_pressed (button1) ki

» pin_level _changed (whiteLedPin ==)>
IRSensor_detected (infrared sensor)
pin_level changed (buzzerPin == 1) i

% pin_level _changed (buzzerPin == 0)

B pin_level_changed (buzzerPin == 1)

i pin_level_changed (buzzerPin == 0)

G

Push button 1 [] White LED
»

[if button1 ==1] \

[if infrared sensor =

@ O

Wh'te LED =1 buzzer = 1 buzzer = 0 buzzer = 1 buzzer = 0

white LED =1

ol

Legend: covered not-covered Defect in the model

37

Test Amplification ey

Leveraging the value of existing manually-written tests to achieve a specific
engineering goal [2]

Amplification by Addition: adding new test cases by modifying existing test cases
to improve them for regression testing

Model Under Test J«—S—‘—)?—C—iﬁ—c—t—q—— Test Cases J |

........................... defines
conforms to conforms to !
Objective: E D vi .. & DEC))(?::_P
Test amplification for xDSLs [EECES i -7 Testinglanguage |

L readsg" ------------------------------------ —‘

1 PTest Quality Evaluator

> Test Debugger

[2] Benjamin Danglot, Oscar Luis Vera-Pérez, Zhongxing Yu, Andy Zaidman, Martin > Test Amplifier
Monperrus, Benoit Baudry. A Snowballing Literature Study on Test Amplification. ST ARSI R AR AN AR A AR

Journal of Systems and Software, Elsevier, 2019, 157, pp.1-16. 38

Test Amplification Example

The manually written test case (input)

Contri
Intro SOTA @

A test case to be generated by

amplification (output)

Test SUT Test SUT
Component (xArduino model) Component (xArduino model)
= button_pressed (button1) >—: - button_pressed (button1) >—:
- pin_level_changed (whiteLedPin == 1) * pin_level changed (whiteLedPin == 1)
IRSensor_detected (infrared sensor) " IRSensor_detected (infrared sensor) B
= pin_level_changed (buzzerPin == 1) Amplification > = pin_level changed (buzzerPin == 1)
b pin_level_changed (buzzerPin == 0) pin_level_changed (buzzerPin == 0)
fpin_level_changed (buzzerPin == 1) é pin_level changed (buzzerPin == 1)
- pin_level_changed (buzzerPin == 0) pin_level changed (buzzerPin == 0)
i3] button_released (button1)
pin_level_changed (whiteLedPin == 0)>
< .

Conclus
ion

39

The Amplified Test Case Q
& its trace on the faulty model

Test SUT
Component (xArduino model) b o e -
H button_pressed (button1) £ Sl 3
pin_level_changed (whiteLedPin == 1) e ,..‘/f@FF-‘}j‘?';" NG gy F glil
i Infrared sensor = e '(Jgf
IRSensor_detected (infrared sensor) —F
> J
pin_level changed (buzzerPin == 1)
=%
pin_level _changed (buzzerPin == 0)
' | if button1 ==1 | E
pin_level_changed (buzzerPin == 1) [infrared sensor =1 |
<& . -
pin_[eve|_changed (buzzerPin ——) wikle LEDSA buzze.r:1 buzzeiz 0 buzze£:1 buzzeizo
button_released (button1) 0_’0_’0_’0
> <4
pin_level_changed (whiteLedPin == 0)
=

{ The last assertion fails, so the test case fails => detecting the regression fault }

40

Proposed Approach

Domain
Expert

&

ideﬁnes

SEUUUU R PRRRS Y

Manually-Written
TDL Test Suite

speéiﬁc fo

Y

Model Under Test

] -
] -
] -
] -
-
) s
] : .
] : .
: -
] ! .
] [.
] ! P
] [.
] : -
.. o
.
o°
>
.
.
-
-
.
-
-

Language
Engineer

o

| defines

Mutation Operators
imports

A
v

\
N

Abstract Syntax

imports

Operational Semantics

ImplemeT.anted by

Regression
TDL test suite

|

Selected amplified
TDL test cases

|

o
~." > Test Case Selector
> Mutant |[PMutation
Generator Analysis

readS _____._..--- - Behavioral Interface x —~]
> I> Test .C.ase _____________ %o New test cases
MOdlfler ... /.@ \\\\ \\ (.D - ’
1 RN (with assertions)
New test cases > 1DL Execution > Assertion
(without assertions) Interpreter traces Generator
If mutation score <1
©
S | Generated Intermediate User-provided Existing [Previously] Proposed
(O]
§’ artifact artifact artifact > Tool [>Proposed Tool > Tool data flow dependency

First tool: Test Case Modifier

Step 1: Removing Assertions

Step 2: Test Input Data Modification Operators

e Modification of Primitive Data:
o A numeric value n is replaced.
o A string value is modified.
o A boolean value is negated.

e Modification of Event Sequences:
o Event duplication

o Event deletion

o Event permutation

o Event creation
o Event modification

42

First tool: Test Case Modifier

Test

Component

Removing assertions

Fil

SUT

(xArduino model)

button_pressed (button1)

———

.

>
pin_level changed (whiteLedPin == 1)

IRSensor_detected (infrared sensor)
=

pin_level changed (buzzerPin ==

)

pin_level_changed (buzzerPin ==

)

pin_level _changed (buzzerPin ==

A 4 A A

pin_level changed (buzzerPin ==

)

é
4

white LED =1

| if button1==1 |

[if infrared sensor ==1]

buzzer =1 buzzer=0 buzzer = 1 buzzer=0

¥ ¥ ¥

Contri Conclus
Intro SOTA @ ion

Finding not-used events of the interface:

BehavioralInterface ArduinoInterface
accepted event button pressed:
parameters = [button: PushButton]
accepted event button_released:
parameters = [button: PushButton]
accepted event IRSensor_detected:
parameters = [sensor: InfraRedSensor]

Instantiating events and
adding them to the test case:

Test SUT
Component (xArduino model)
- button_pressed (button1) >—'
sensor_detected (infrared sensor)
button_released (button1) z

43

Second Tool: DO DN .

s Component (xArduino model)
Assertion generator ° |
e button_pressed (button1) e
>
pin_level _changed (whiteLedPin == 1)
. . . 4
Executing the new test case on the original S —
. >
model, the trace provides the exposed events __Pin_level_changed (buzzerPin == 1)
that can be transformed into the test case B
' & pin_level_changed (buzzerPin == 1)
assertions ' pin_level _changed (buzzerPin == 0)
button_released (button1)
Push button 1 r 1 White LED pin_level_changed (whiteLedPin == 0)
& L 1.: _4 =
4. | I__,@F.Fy‘ilino L‘JVNQQ‘% = ' | S ‘S
Infrared sensor LS : s (,JQ / =] .JE E
©'°—>,Z. ’:’ ----- bé Test % GCJ SUT
w ' Component g[) % (xArduino model)

B button_pressed (button1)

Y

| if button1==1 |

sensor_detected (infrared sensor)

[if infrared sensor == 1]

\

white LED =1 buzzer = 1 buzzer = 0 buzzer = 1 buzzer=0

¥ ¥ ¥

button_released (button1)

V4

Evaluation Q

RQ1 How much genericity is provided by the 100.00%
framework in terms of the supported xDSLs?

40.00% 13.33% 42.22% 55.10% 54.11%
27.23% 11.91%

86.67% 30.67% % 4:06%
£1038% 4.06% M,

75.00%
y/5.62%

RQ2 To what extent do the generated test cases 69.20%
£ Q0 57.78%

increase the mutation score of the original, 50.00% 56.23%
i , 34.09% JPT
manually-written, test cases? 744.90% 45.89%

25.00%

13.64%

. 0.00%
xArduino XxPSSM A1 A2 A3 A4 A5 A6 P1 P2 P3 P4 P5

mutation score improvement B initial mutation score

Number of tested models 6 5+60

Size range of models (#EObjects) 18-59 13-154 Mutation score improvement for 11 test suites

Initial test suite size (#test cases) 22 216 of manually defined models:

#generated mutants 394 12,087 6 xArduino models (A bars)

5 xPSSM models (P bars)

45

SOTA

o
g8
=

Evaluation Results

RQ3: To what extent do the size and the quality of the original test suites impact the

amplification result?
Different datasets based on size and mutation score (threshold = 80%)

Two types of comparison:
same size, different qualities
different sizes, similar qualities

- by amplifying high-quality tests and/or more test cases, it is more probable to
generate new effective test cases
- theoriginal test cases with higher quality have more contribution to test amplification

46

Conclusion &

Perspectives

Chapter 6 of the manuscript

Proposal:
A generic testing framework for xDSLs

Users
* Enabling language engineers to provide testing support for their xDSLs

* Enabling domain experts to test behavioral models as early as possible

Contributions:

 Test case definition, execution, and reporting

» Test quality measurement (in collaboration with JKU and UAM)
» Test debugging (in collaboration with JKU)

* Test amplification for improving regression testing (in collaboration with
UAM)

Intro SoTA Contrib ¢ Concl
ution usion

i (owcomote

JXU

JOHANNES KEPLER
UNIVERSITAT LINZ

Universidad Autonoma
de Madrid

48

i SOTA Contrib Co_ncl
ution usion

Publications

— International journal

* Faezeh Khorram, Erwan Bousse, Jean-Marie Mottu, Gerson Sunyé, “Advanced Testing and Debugging Support for
Reactive Executable DSLs”, Software and Systems Modeling (2022).

* Faezeh Khorram, Erwan Bousse, Jean-Marie Mottu, Gerson Sunyé, “Adapting TDL to Provide Testing Support for
Executable DSLs”, The Journal of Object Technology, 20(3), pp.6:1-15, 2021.

— International conferences

* Faezeh Khorram, Erwan Bousse, Antonio Garmendia, Jean-Marie Mottu, Gerson Sunye, Manuel Wimmer, “From
Coverage Computation to Fault Localization: A Generic Framework for Domain-Specific Languages”, Proceedings of
the 15th ACM SIGPLAN International Conference on Software Language Engineering (SLE), 2022.

* Faezeh Khorram, Erwan Bousse, Jean-Marie Mottu, Gerson Sunyé, Pablo Gomez-Abajo, Pablo C.Cafizares, Esther
Guerra, Juan de Lara, “Automatic Test Amplification for Executable Models”, Proceedings of the ACM/IEEE 25th
International Conference on Model Driven Engineering Languages and Systems (MODELS), 2022.

— International workshops

* Faezeh Khorram, Jean-Marie Mottu, Gerson Sunyé, “Challenges & Opportunities in Low-Code Testing”, Proceedings
of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion
Proceedings, 2020, Virtual.

Intro SOTA

Contrib Concl
ution usion

Limitations

Usability for the

Genericity regarding
supported xDSLs:
evaluation on more
xDSLs is needed

Language
Engineer

P

“ ~defines=>

Usability for the
language engineer
must be assessed

...

domain expert
conforms to | must be examined

OSSOSO USRI TSROSO is Domain K_—

defines

Expert
> Testing Language |
A uses

1 DTest Quality Evaluator .
> -
Test Debugger 2 é
1 Test Amplifier . B

The impact of different parameters (e.g.,
test data modifiers, #of iterations, ...) on

the amplification results must be studied
50

Intro SOTA

Contrib @
Perspectives
Automatic co-evolution of \ Automatic test case generation
models and test cases s '/-

Model Under Test _.Specificto | Test Cases J |
... defines
conforms to conforms to |
TeSting Support fOf i i ... & Domain
compiled executable 5 ' Expert

DSLs |

Language

Engineer uses uses
0 _ reads T S eSS R ae T
& B [>I'est Quality Evaluator .
g ® £
Test Debugger 2 é
/—» > Test Amplifier A
Test amplification for other objectives Broadening test oracle definition
(e.g., improving coverage, reproducing approaches (e.g., using temporal
crashes, detecting new faults,...) properties to define oracles)

51

UNIVERSITE

4 . MSCA
/ / .& l O W C O m Ot e g Marie Skfodowska-Curie Actions
' MATHSTIC Institut Mines-Télécom

A Testing Framework for Executable
Domain-Specific Languages

Faezeh Khorram

IMT Atlantique
Reporters : Thesis director:
+ Prof. Anne ETIEN, Université de Lille, France « Prof. Gerson SUNYE, Nantes Université, France

» Prof. Juergen DINGEL, Queen’s University, Canada

Examiners:

» Prof. Benoit BAUDRY, KTH Royal Institute of Technology, Sweden
» Dr. Javier TROYA, Universidad de Malaga, Spain

» Prof. Antoine BEUGNARD, IMT Atlantique, France

Thesis supervisors:
* Dr. Jean-Marie MOTTU, Nantes Université, France
* Dr. Erwan BOUSSE, Nantes Université, France

