
A Testing Framework for Executable
Domain-Specific Languages

Reporters :
• Prof. Anne ETIEN, Université de Lille, France
• Prof. Juergen DINGEL, Queen’s University, Canada
Examiners:
• Prof. Benoît BAUDRY, KTH Royal Institute of Technology, Sweden
• Dr. Javier TROYA, Universidad de Málaga, Spain
• Prof. Antoine BEUGNARD, IMT Atlantique, France

Faezeh Khorram
IMT Atlantique

Thesis director:
• Prof. Gerson SUNYE, Nantes Université, France

Thesis supervisors:

• Dr. Jean-Marie MOTTU, Nantes Université, France

• Dr. Erwan BOUSSE, Nantes Université, France

Outline

2

Introduction

State-of-the-art

Contribution & Evaluation

Conclusion & Perspectives

Introduction
Conclus

ion
Contrib

utionSOTAIntro

How to develop complex
software?

• Dealing with complexity of the
application domain

• Involving the stakeholders
with diverse knowledge and
expertise in the development
lifecycle

3

• A software development paradigm

• Uses models as the central artifact of software development

4

Model-Driven Engineering (MDE)

Model

Static analysis

Documentation

Refactoring/
Transformation

Automated
testing

Reverse
Engineering

Code generation

Model
• an abstraction of an original system for a specific purpose
• reflects a relevant selection of the system’s properties
• usable in place of the system with respect to some purpose

Conclus
ion

Contrib
utionSOTAIntro

• Languages for the definition of
models,

• made for specific technical or
application domains,

• tailored to be used by domain
experts.

5

Domain-Specific Language (DSLs)

Low-Code Development Platforms
(LCDPs)

Mendix Microflow DSL

A microflow model

conforms to

Conclus
ion

Contrib
utionSOTAIntro

• Representing dynamic aspects
of a system

6

Behavioral models

We need to execute the model

• How to make sure if the model
behaves correctly?

State machine Business process

Arduino modelActivity diagram

Conclus
ion

Contrib
utionSOTAIntro

7

How to
execute it?

Translational

semantics

Operational semantics

Running the code generated by a compiler

Early Dynamic Verification and Validation
(V&V) of models

Running the model itself using an interpreter

• Models can be executed if the DSL
provides an execution semantics

Executable Models
Conclus

ion
Contrib

utionSOTAIntro

8

Dynamic Verification of Executable Models

• What if the model execution is
not as expected?

Testing executable models

• How to find the cause of
un-expected behavior?

There is a defect in the model

Running example: A basic intrusion alarm system

Conclus
ion

Contrib
utionSOTAIntro

9

Testing Executable Models

• Testing is the primary method used
for evaluating software systems

Testing involves:

• executing systems in interesting
scenarios,

• observing whether they act as
expected.

Input: button pressed, sensor detected

Expected output: LED turned on,
buzzer turned on and off 2 times

Execution output: LED turned on,
 buzzer turned on and off once

How to define input and output?

Conclus
ion

Contrib
utionSOTAIntro

10

Problem Statement
Roles:

• Language Engineer: defines an xDSL and tools for using it

• Domain Expert: user of the xDSL

Modeling Environment

Modeling Editor

xDSL

Behavioral
model

conforms to
uses

Conclus
ion

Contrib
utionSOTAIntro

11

Problem Statement
• Given an xDSL, its domain experts can test the conforming models if the domain concepts can

be used in the specification of test cases

• Challenge#1: Domain concepts differ from one xDSL to another

Modeling Environment

Modeling Editor

xDSL

Behavioral
model

conforms to

Testing Editor

Test cases

uses
Allows the domain expert
to define test cases using

the domain concepts

Conclus
ion

Contrib
utionSOTAIntro

12

Problem Statement
• Written test cases must be executed in unison with the models under test

• Test execution must be somehow connected to the model execution

• Challenge#2: Model execution facilities differ from one xDSL to another

Modeling Environment

Modeling Editor

xDSL

Behavioral
model

conforms to

Testing Editor

Test cases

uses

Model
Execution
Facilities

Test
Execution
Facilities

Allows the domain
expert to run test

cases on the models

Conclus
ion

Contrib
utionSOTAIntro

13

Problem Statement
Providing facilities to improve test efficiency:
• Evaluating whether the written test cases are good enough

• Diagnosing the faults when test cases fail on a model

• Improving the strength of the written test cases

Modeling Environment

Modeling Editor

xDSL

Behavioral
model

conforms to

Testing Editor

Test cases

uses

Model
Execution
Facilities

Test
Execution
Facilities

Test quality
measurement

Test failure
diagnosis

Test
Improvement

Advanced
Testing Facilities

Provides facilities for
the domain expert to

improve test efficiency

Challenge#3: dependency to testing

frameworks as they need to directly

manipulate test cases and their

system under test

Conclus
ion

Contrib
utionSOTAIntro

14

Problem Statement:
Diversity and Heterogeneity of xDSLs

Modeling Environment

Modeling Editor

xDSL

Behavioral
model

conforms to

Testing Editor

Test cases

uses

Model
Execution
Facilities

Test
Execution
Facilities

Test quality
measurement

Test failure
diagnosis

Test
Improvement

Advanced
Testing Facilities

• New xDSL ⇒ new domain concepts, new execution facilities
• Each time a new xDSL is engineered, a new testing framework must be created from

scratch

Solution: a systematic approach to provide testing support for every given xDSL

Conclus
ion

Contrib
utionSOTAIntro

15

Features

Scope

xDSL type

Testing level

Test Engineer

Test language

Test
executability

Advanced
facilities

Generic

DSL-Specific

Compiled
DSLs

Interpreted
DSLs

Technical
Programmer

Code level

Domain
expert

Model level

Modeling
Language

Programming
language

Test execution

Oracle
validation

Automatic
reporting

Quality
measurement

Test
debugging

Test
amplification

State-of-the-art: Considered features
Conclus

ion
Contrib

utionSOTAIntro

16

State-of-the-art:
13 approaches

Conclus
ion

Contrib
utionSOTAIntro

Required features
to overcome said

challenges

Lack of reusability

Only for compiled DSLs
Only for metamorphic testing

No advanced facility

Our Goal * * * * * * * * * * *

17

Testing Language

Test Quality Evaluator

Test Debugger

Test Amplifier

Te
st

R

un
ne

r

uses

Model Under Test Test Casesspecific to

defines

uses

reads

conforms to conforms to

xDSL Test Quality Evaluator

Test Debugger

Proposal:
A generic testing framework for xDSLs

Users

● Enabling language engineers to provide testing support for their xDSLs

● Enabling domain experts to efficiently test behavioral models as early as possible

Contributions:

● Test case definition for models

● Test execution on models

● Test quality measurement

● Test debugging

● Test amplification for improving

regression testing

blue == part of the defense presentation

Test Case Definition and
Execution

Chapter 3 of the manuscript

18

19

Executable Domain-Specific Languages (xDSLs)
- Abstract Syntax

Domain concepts and their

relationships
● defined in an Ecore metamodel

Running Example: an xDSL for

modeling and simulating Arduino

boards and their behaviors

(xArduino)

20

execute(Block)
execute(If)
execute(ModuleAssignment)
changeLevel(DigitalPin)
press(PushButton)
release(PushButton)
detect(InfraRedSensor)

Execution rules

Definition of runtime statea
a

b

c

<<imports>>

<<implementedBy>>

Execution rules: changing runtime state

to execute a model

Behavioral Interface (Optional):

How to interact with a running

model

b

c

Executable Domain-Specific Languages (xDSLs)
- Operational Semantics

21

Testing Language

Test Quality Evaluator

Test Debugger

Test Amplifier

Te
st

R

un
ne

r

uses

Model Under Test Test Casesspecific to

defines

uses

reads

conforms to conforms to

Question: How to enable the domain experts to write test cases for
their behavioral models?

1) Allows the use of the domain

concepts in defining test cases

2) Can launch the execution of the

model under test

3) Provides facilities to investigate

whether the model under test

behaves as expected

Answer: providing a testing language that meets three requirements:

Defining Test Cases for Models
Conclus

ion
Contri
butionSOTAIntro

xDSL

Candidate: Test Description Language [1]

22[1] Makedonski, P., Adamis, G., Käärik, M. et al. “Test descriptions with ETSI TDL”. Software Quality Journal, vol. 27, no.2 , 885–917 (2019)

Advantages of TDL:

✔ A standardized language for the specification of
test cases

✔ Not specific to any language (GPL or DSL)

✔ Designed as a simple language for testers
lacking programming knowledge, so a good fit
for domain experts

Conclus
ion

Contri
butionSOTAIntro

Candidate: Test Description Language [1]

23[1] Makedonski, P., Adamis, G., Käärik, M. et al. “Test descriptions with ETSI TDL”. Software Quality Journal, vol. 27, no.2 , 885–917 (2019)

Challenges:

- The domain expert must first manually define
the required domain-specific concepts, and
then write test cases

- No clear way to enable TDL test cases to
execute models conforming to a DSL

- Relying on a simple representation of the
expected behavior of the system under test

Conclus
ion

Contri
butionSOTAIntro

How to resolve the challenges of
using TDL for testing models?

24

Contributions

Adapting the standardized Test Description Language (TDL) to the
testing of executable models
• Cont#1. TDL Library Generator: generating a domain-specific TDL library

for each given xDSL to be used for writing test cases for the xDSL’s
conforming models

• Cont#2. TDL Interpreter : a test execution engine dedicated to running
TDL test cases on executable models

Conclus
ion

Contri
butionSOTAIntro

Using events of the behavioral interface and types of the abstract syntax and runtime state
definition to define test data

● test input data and expected output are both a trace of events

25

An Example TDL Test Case for the xArduino model
Conclus

ion
Contri
butionSOTAIntro

26

TDL Library Generator

Abstract Syntax

Runtime state
definition

Behavioral Interface

xDSL

<<extends>>

TDL Library Generator

Ecore to TDL
Transformer

Domain-Specific
TDL Library

xDSL-Specific
Types Package

Generated
artifact

User-provided
artifact

Proposed
Tool

produces dependency

Le
ge

nd

reads

reads

defines

runs uses

Conclus
ion

Contri
butionSOTAIntro

27

TDL Library Generator:
Ecore to TDL Transformation

<<extends>>

Conclus
ion

Contri
butionSOTAIntro

28

TDL Library Generator

Abstract Syntax

Runtime state
definition

Behavioral Interface

xDSL

<<extends>>

TDL Library Generator

Ecore to TDL
Transformer

Domain-Specific
TDL Library

xDSL-Specific
Types Package

Generated
artifact

User-provided
artifact

Proposed
Tool

produces dependency

Le
ge

nd

reads

reads

defines

runs uses

Behavioral Interface
to TDL Transformer

xDSL-Specific
Events Package

reads

Conclus
ion

Contri
butionSOTAIntro

29

TDL Library Generator:
Behavioral Interface to TDL Transformation

Conclus
ion

Contri
butionSOTAIntro

30

TDL Library Generator

Abstract Syntax

Runtime state
definition

Behavioral Interface

xDSL

<<extends>>

TDL Library Generator

Ecore to TDL
Transformer

Domain-Specific
TDL Library

xDSL-Specific
Types Package

Generated
artifact

User-provided
artifact

Proposed
Tool

produces dependency

Le
ge

nd

reads

reads

defines

runs uses

Behavioral Interface
to TDL Transformer

xDSL-Specific
Events Package

reads

TDL Code
Generator

Common
Package

Test Configuration
Package

Conclus
ion

Contri
butionSOTAIntro

31

Writing executable TDL test cases for models
using the generated xArduino-specific TDL library

Importing the generated TDL library

Defining model elements in TDL to
be used as test data

Conclus
ion

Contri
butionSOTAIntro

32

Testing Language

Test Quality Evaluator

Test Debugger

Test Amplifier

Te
st

R

un
ne

r

uses

Model Under Test Test Casesspecific to

defines

uses

reads

conforms to conforms to

Proposing an operational semantics for TDL:
● Can run test cases on executable models

● Provides several facilities to interrogate the behavior of a model in its execution by a

test case

● Produces the test execution results

Running Test Cases on Models
Conclus

ion
Contri
butionSOTAIntro

xDSL

TDL Interpreter

The TDL Interpreter main loop

33

TDL Interpreter dependencies
to external components

Conclus
ion

Contri
butionSOTAIntro

34

• RQ#1: Does the approach provide testing facilities for xDSLs in which their abstract syntax is

designed for different domains?

xFSM xBPMN xMiniJava xArduino xPSSM

xDSL
size

Abstract syntax size (# EClasses) 3 39 76 59 39

Semantics size (LoC)
K3: 110
ALE: 90

ALE:
318

K3:
1042

K3:768 K3: 975

Tested
Models

Number of tested Models 5 2 6 6 5 + 60

Size range of tested models (# EObjects) 7-133 26-46 31-571 18-59 13-154

• RQ#2: Does the approach provide testing facilities for xDSLs in which their operational

semantics is implemented using different metaprogramming approaches?

Conclus
ion

Contri
butionSOTAIntroEvaluation

35

• RQ#1: Does the approach provide testing facilities for xDSLs in which their abstract syntax is

designed for different domains?

xFSM xBPMN xMiniJava xArduino xPSSM

xDSL
size

Abstract syntax size (# EClasses) 3 39 76 59 39

Semantics size (LoC)
K3: 110
ALE: 90

ALE:
318

K3:
1042

K3:768 K3: 975

Tested
Models

Number of tested Models 5 2 6 6 5 + 60

Size range of tested models (# EObjects) 7-133 26-46 31-571 18-59 13-154

Test
Artifacts

TDL Library size (LoC generated) 76 170 189 251 203

Total n. of test cases 45 6 77 22 216

Size range of test suites (LoC) 50-157 33-50 33-188 30-132 25-1311

• RQ#2: Does the approach provide testing facilities for xDSLs in which their operational

semantics is implemented using different metaprogramming approaches?

Conclus
ion

Contri
butionSOTAIntroEvaluation Result

Test Improvement
Chapter 5 of the manuscript

36

37

Limits of Manually Written Test Suite
for Regression Testing

Legend: covered not-covered Defect in the model

● Testing a model ensure the correctness of its current version, but the

model may be affected by faults in future updates

Conclus
ion

Contri
butionSOTAIntro

Leveraging the value of existing manually-written tests to achieve a specific

engineering goal [2]

Amplification by Addition: adding new test cases by modifying existing test cases

to improve them for regression testing

38

Test Amplification

[2] Benjamin Danglot, Oscar Luis Vera-Pérez, Zhongxing Yu, Andy Zaidman, Martin
Monperrus, Benoit Baudry. A Snowballing Literature Study on Test Amplification.
Journal of Systems and Software, Elsevier, 2019, 157, pp.1-16.

Testing Language

Test Quality Evaluator

Test Debugger

Test Amplifier

Te
st

R

un
ne

r

uses

Model Under Test Test Casesspecific to

defines

uses

reads

conforms to conforms to

Objective:
Test amplification for xDSLs

Conclus
ion

Contri
butionSOTAIntro

xDSL

39

A test case to be generated by

amplification (output)

Amplification

The manually written test case (input)

Test Amplification Example Conclus
ion

Contri
butionSOTAIntro

40

The Amplified Test Case
& its trace on the faulty model

The last assertion fails, so the test case fails => detecting the regression fault

Conclus
ion

Contri
butionSOTAIntro

41

Manually-Written
TDL Test Suite

Model Under Test

specific to

defines
Mutation Operators

defines

Abstract Syntax

Operational Semantics

Behavioral Interface

imports

imports

Implemented by

xDSL

Test Case
Modifier

conforms to

reads

TDL
Interpreter

Execution
traces

Assertion
Generator

New test cases
(with assertions)

Selected amplified
TDL test cases

Regression
TDL test suite

reads
reads

If mutation score <1

reads

New test cases
(without assertions)

Test Case Selector

Mutant
Generator

Mutation
Analysis

uses

Generated
artifact

Intermediate
artifact

User-provided
artifact

Existing
Tool

Proposed
Tool data flow dependency

Le
ge

nd

Proposed Approach

Previously
Proposed Tool

First tool: Test Case Modifier

42

● Modification of Primitive Data:
○ A numeric value n is replaced.
○ A string value is modified.
○ A boolean value is negated.

● Modification of Event Sequences:
○ Event duplication
○ Event deletion
○ Event permutation
○ Event creation
○ Event modification

Step 1: Removing Assertions

Step 2: Test Input Data Modification Operators

Conclus
ion

Contri
butionSOTAIntro

First tool: Test Case Modifier

43

Finding not-used events of the interface:

Finding values for the parameters of not-used events:

Instantiating events and
adding them to the test case:

Test case

m
odification

Removing assertions

Conclus
ion

Contri
butionSOTAIntro

Executing the new test case on the original

model, the trace provides the exposed events

that can be transformed into the test case

assertions

44

Second Tool:
Assertion generator

A
ss

er
ti

o
n

ge

n
er

at
io

n

Conclus
ion

Contri
butionSOTAIntro

45

RQ1 How much genericity is provided by the

framework in terms of the supported xDSLs?

RQ2 To what extent do the generated test cases

increase the mutation score of the original,

manually-written, test cases?

Mutation score improvement for 11 test suites

of manually defined models:

6 xArduino models (A bars)

 5 xPSSM models (P bars)

Evaluation

xArduino xPSSM

Number of tested models 6 5 + 60

Size range of models (#EObjects) 18-59 13-154

Initial test suite size (#test cases) 22 216

#generated mutants 394 12,087

Conclus
ion

Contri
butionSOTAIntro

RQ3: To what extent do the size and the quality of the original test suites impact the
amplification result?

• Different datasets based on size and mutation score (threshold = 80%)
• Two types of comparison:

• same size, different qualities
• different sizes, similar qualities

46

Evaluation Results

⇒ by amplifying high-quality tests and/or more test cases, it is more probable to

generate new effective test cases

⇒ the original test cases with higher quality have more contribution to test amplification

Conclus
ion

Contri
butionSOTAIntro

Conclusion &
Perspectives

Chapter 6 of the manuscript

47

Proposal:
A generic testing framework for xDSLs
Users

• Enabling language engineers to provide testing support for their xDSLs

• Enabling domain experts to test behavioral models as early as possible

Contributions:

• Test case definition, execution, and reporting

• Test quality measurement (in collaboration with JKU and UAM)

• Test debugging (in collaboration with JKU)

• Test amplification for improving regression testing (in collaboration with
UAM)

48

Concl
usion

Contrib
utionSOTAIntro

Publications

— International journal
• Faezeh Khorram, Erwan Bousse, Jean-Marie Mottu, Gerson Sunyé, “Advanced Testing and Debugging Support for

Reactive Executable DSLs”, Software and Systems Modeling (2022).

• Faezeh Khorram, Erwan Bousse, Jean-Marie Mottu, Gerson Sunyé, “Adapting TDL to Provide Testing Support for
Executable DSLs”, The Journal of Object Technology, 20(3), pp.6:1-15, 2021.

— International conferences
• Faezeh Khorram, Erwan Bousse, Antonio Garmendía, Jean-Marie Mottu, Gerson Sunye, Manuel Wimmer, “From

Coverage Computation to Fault Localization: A Generic Framework for Domain-Specific Languages”, Proceedings of
the 15th ACM SIGPLAN International Conference on Software Language Engineering (SLE), 2022.

• Faezeh Khorram, Erwan Bousse, Jean-Marie Mottu, Gerson Sunyé, Pablo Gómez-Abajo, Pablo C.Cañizares, Esther
Guerra, Juan de Lara, “Automatic Test Amplification for Executable Models”, Proceedings of the ACM/IEEE 25th
International Conference on Model Driven Engineering Languages and Systems (MODELS), 2022.

— International workshops
• Faezeh Khorram, Jean-Marie Mottu, Gerson Sunyé, “Challenges & Opportunities in Low-Code Testing”, Proceedings

of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion
Proceedings, 2020, Virtual.

49

Concl
usion

Contrib
utionSOTAIntro

50

Limitations

Testing Language

Test Quality Evaluator

Test Debugger

Test Amplifier

Te
st

R

un
ne

r

uses

Model Under Test Test Casesspecific to

defines

uses

reads

conforms to conforms to

Genericity regarding
supported xDSLs:
evaluation on more
xDSLs is needed

Usability for the
language engineer
must be assessed

Usability for the
domain expert
must be examined

The impact of different parameters (e.g.,
test data modifiers, #of iterations, …) on
the amplification results must be studied

Test Amplifier

xDSL

Concl
usion

Contrib
utionSOTAIntro

51

Perspectives

Testing Language

Test Quality Evaluator

Test Debugger

Test Amplifier

Te
st

R

un
ne

r

uses

defines

uses

reads

conforms to conforms to
Testing support for
compiled executable
DSLs

Concl
usion

Contrib
utionSOTAIntro

xDSL

Test Amplifier

Testing Language

Te
st

R

un
ne

r

Broadening test oracle definition
approaches (e.g., using temporal
properties to define oracles)

Test amplification for other objectives
(e.g., improving coverage, reproducing
crashes, detecting new faults,…)

Automatic test case generationAutomatic co-evolution of
models and test cases

Model Under Test Test Casesspecific to

A Testing Framework for Executable
Domain-Specific Languages

Reporters :
• Prof. Anne ETIEN, Université de Lille, France
• Prof. Juergen DINGEL, Queen’s University, Canada
Examiners:
• Prof. Benoît BAUDRY, KTH Royal Institute of Technology, Sweden
• Dr. Javier TROYA, Universidad de Málaga, Spain
• Prof. Antoine BEUGNARD, IMT Atlantique, France

Faezeh Khorram
IMT Atlantique

Thesis director:
• Prof. Gerson SUNYE, Nantes Université, France

Thesis supervisors:

• Dr. Jean-Marie MOTTU, Nantes Université, France

• Dr. Erwan BOUSSE, Nantes Université, France

