
Contribution to the Analysis of the
Design-Space of a Distributed

Transformation Engine
Jolan PHILIPPE

PhD Defense, speciality: Computer Science

Referees: Jesús SÁNCHEZ CUADRADO Associate professor, Universidad de Murcia, Spain

Matthias TICHY Professor, Ulm University, Germany

Examiners: Thomas LEDOUX Professor, IMT Atlantique, France

Leen LAMBERS Professor, Brandenburg University of Technology, Germany

Antonio VALLECILLO Professor, University of Málaga, Spain

Ph.D. director: Gerson SUNYE Associate professor, University of Nantes, France

Ph.D. advisors: Hélène COULLON Associate professor, Institut Mines-Telecom Atlantique, France

Massimo TISI Associate professor, Institut Mines-Telecom Atlantique, France

19th December 2022

1

2

2.1

CONTEXT & MOTIVATION

CONTRIBUTIONS

SPARKTE: A DISTRIBUTED
TRANSFORMATION ENGINE
DISTRIBUTED QUERY
EVALUATION STRATEGIES

FEATURE ANALYSIS

3 CONCLUSION

2.2

2.3

2

Outline

3

CONTEXT & PROBLEMATIC1

● Model-Driven Engineering
● Cloud Computing
● Machine Learning

Lowcomote is a H2020-ITN project aiming at training
15 PhD students, and build a low-code development
platforms based on

4WP5: Scalable Low-Code Artefact Management

Context of the thesis 1 CONTEXT & MOTIVATION

Transformation

MODEL

5

● Software engineering approach
● Models as the central artifact to represent systems

Model-Driven Engineering 1 CONTEXT & MOTIVATION

Testing

Documentation Rev. engineering
Static analysis

Code generation

Transformation

MODEL

6

● Software engineering approach
● Models as the central artifact to represent systems

Model-Driven Engineering 1 CONTEXT & MOTIVATION

Testing

Documentation Rev. engineering
Static analysis

Code generation

7

SOURCE
MODEL

TARGET
MODEL

TRANSFORMATION

Model Transformation 1 CONTEXT & MOTIVATION

8

SOURCE
MODEL

TARGET
MODEL

TRANSFORMATION

MariePierre

Radioactivity

likes likes
MariePierre

Radioactivity

likes likes

Affinity

Model Transformation 1 CONTEXT & MOTIVATION

odel transformation

SOURCE
MODEL

TARGET
MODEL

TRANSFORMATION

MariePierre

Radioactivity

likes likes

Many transformation
languages: ATL, ETL,
QVT, Henshin, Viatra,
…

Model Transformation 1 CONTEXT & MOTIVATION

rule copy (e: Element)
output:
 new Element (content ← e.content)

rule affinity (e1: Element,
 e2: Element)
matching:
 (e1.likes) ⋂ (e2.likes) ≠ ø
output:
 new Affinity (from ←e1, to ← e2)

MariePierre

Radioactivity
likes likes

Affinity

Pierre

Marie

Radio…

Pierre

Marie

Radio…

Pierre

Marie
Radio… Affinity

9

10

SOURCE
MODEL

TARGET
MODEL

TRANSFORMATION

MariePierre

Radioactivity

likes likes
MariePierre

Radioactivity

likes likes

Affinity

rule copy (e: Element)
output:
 new Element (content ← e.content)

rule affinity (e1: Element,
 e2: Element)
matching:
 (e1.likes) ⋂ (e2.likes) ≠ ø
output:
 new Affinity (from ←e1, to ← e2)

The expression ei.likes can
be expressed as a queryMany transformation

languages: ATL, ETL,
QVT, Henshin, Viatra,
…

Model Transformation 1 CONTEXT & MOTIVATION

11

System

I just discovered radioactivity!

Marie Curie
May 4th, 1898

Comment

3 comments

Amazing! Do you want to marry me?
Pierre Curie

Like Comment May 5th, 1898

You stupid! We already are
Marie Curie

Like Comment May 5th, 1898

3

I did first, 2 years ago.
Henri Becquerel

Like Comment May 12th, 1898
1

Use case: A platform for analysing a
social network 1 CONTEXT & MOTIVATION

12

Use case: A platform for analysing a
social network 1 CONTEXT & MOTIVATION

System

structural
definition

Model

System

represents

13

Metamodel

structural
definition

Metamodel

Model

conforms-to
author

Use case: A platform for analysing a
social network 1 CONTEXT & MOTIVATION

SystemSystem

represents

14

 Example: score(p: Post) ≔ # comments × 10 + # likes

Example 1: Give an activity score for
posts in a social network 1 CONTEXT & MOTIVATION

score(Radioactivity) = 3 × 10 + 4 = 34

author

author

15

 Example: score(p: Post) ≔ # comments × 10 + # likes

rule Post2ScoredPost (p:Post)
output:
 new Post (id ← p.id,
 timestamp ← p.timestamp
 content ← p.content,
 score ← score(p))

Example 1: Give an activity score for
posts in a social network 1 CONTEXT & MOTIVATION

 score as a query

author

16

Affinity

Example: Comment at least 3 same posts

Marie CuriePierre Curie

Example 2: Look for user affinities in a
social network 1 CONTEXT & MOTIVATION

author

17

Affinity

Example: Comment at least 3 same posts

rule FindAffinity (u1:User, u2:User)
matching:
 commentedPosts(u1) ⋂ commentedPosts(u2) ≽ 3
output:
 new Affinity(user1 ← u1, user2 ← u2)

Example 2: Look for user affinities in a
social network 1 CONTEXT & MOTIVATION

18

● Computational complexity
○ Size of the model
○ Storage and memory constraints

● Scalability with increasing resources
● Implicit optimization

➢ Two main approaches
○ Avoid computation
○ Parallelize computation

[1] Dimitrios S. Kolovos, Louis M. Rose, Nicholas Drivalos Matragkas, Richard F. Paige, Esther Guerra, Jesús Sánchez Cuadrado, Juan de
Lara, István Ráth, Dániel Varró, Massimo Tisi, Jordi Cabot. A research roadmap towards achieving scalability in model driven
engineering. BigMDE@STAF 2013

Model management for Very Large Models
(VMLs)[1]

1 CONTEXT & MOTIVATION

Memory
distribution

Job
distribution

Parallelize computation for
model management

operations

Shared
memory

Distributed
memory

Data
distribution

Task
distribution

Mandatory
Or

Asynchronism

Optional

19

1 CONTEXT & MOTIVATIONScalability of model management for VLMs

Amine Benelallam et al. «Efficient model partitioning for distributed model …» SLE 2016 X X X X

Amine Benelallam et al. «ATL-MR: model transformation on MapReduce» SPLASH 2015 X X X

Loli Burgueño et al. «A Linda-Based platform for the parallel execution …» IST 2016 X X X X

Loli Burgueño et al. «Towards distributed model transformations with LinTra» JISBD 2016 X X X X X

Loli Burgueño et al. «Parallel in-place model transformations with LinTra» CEUR-WS 2015 X X X X

Jesús S. Cuadrado et al. «Efficient execution of ATL model transformations …» TSE 2020 X X X

Gábor Imre et al. «Parallel graph transformations on multicore systems» MSEPT 2012 X X X

Christian Krause et al. «Implementing graph transformations in the BSP model» FASE 2014 X X X

Sina Madani et al. «Distributed model validation with Epsilon» SSM 2021 X X X X

Sina Madani et al. «Towards optimisation of model queries: a parallel …» ECMFA 2019 X X X X

Gergely Mezei et al. «Towards truly parallel model transformations: a …» EURCON 2019 X X X

Massimo Tisi et al. «Parallel execution of ATL transformation rules» MODELS 2013 X X X

Le-Duc Tung et al. «Towards systematic parallelization of graph transfo. …» IJPP 2017 X X X

Tamás Vajk et al. «Runtime model validation with parallel object …» MoDeVVa 2011 X X X
M

od
el

 q
ue

ry
M

od
el

 tr
an

sf
o.

Pa
tte

rn
 m

at
ch

.
O

pt
im

iz
at

io
n

Sh
ar

ed
 m

em
.

D
is

tri
b.

 m
em

.
Ta

sk
-p

ar
al

le
l

D
at

a-
pa

ra
lle

l
As

yn
ch

ro
ni

sm

20

Parallelization in model
transformation

Amine Benelallam et al. «Efficient model partitioning for distributed model …» SLE 2016 X X X X

Amine Benelallam et al. «ATL-MR: model transformation on MapReduce» SPLASH 2015 X X X

Loli Burgueño et al. «A Linda-Based platform for the parallel execution …» IST 2016 X X X X

Loli Burgueño et al. «Towards distributed model transformations with LinTra» JISBD 2016 X X X X X

Loli Burgueño et al. «Parallel in-place model transformations with LinTra» CEUR-WS 2015 X X X X

Jesús S. Cuadrado et al. «Efficient execution of ATL model transformations …» TSE 2020 X X X

Gábor Imre et al. «Parallel graph transformations on multicore systems» MSEPT 2012 X X X

Christian Krause et al. «Implementing graph transformations in the BSP model» FASE 2014 X X X

Sina Madani et al. «Distributed model validation with Epsilon» SSM 2021 X X X X

Sina Madani et al. «Towards optimisation of model queries: a parallel …» ECMFA 2019 X X X X

Gergely Mezei et al. «Towards truly parallel model transformations: a …» EURCON 2019 X X X

Massimo Tisi et al. «Parallel execution of ATL transformation rules» MODELS 2013 X X X

Le-Duc Tung et al. «Towards systematic parallelization of graph transfo. …» IJPP 2017 X X X

Tamás Vajk et al. «Runtime model validation with parallel object …» MoDeVVa 2011 X X X
M

od
el

 q
ue

ry
M

od
el

 tr
an

sf
o.

Pa
tte

rn
 m

at
ch

.
O

pt
im

iz
at

io
n

Sh
ar

ed
 m

em
.

D
is

tri
b.

 m
em

.
Ta

sk
-p

ar
al

le
l

D
at

a-
pa

ra
lle

l
As

yn
ch

ro
ni

smParallelization in model
transformation

21

INPUT DATA

Chunk 1

Chunk 1’

Chunk 2

Chunk 2’

Chunk 3

Chunk 3’

Chunk 4

Chunk 4’

Worker 1 Worker 2 Worker 3 Worker 4

22

1 CONTEXT & MOTIVATIONData-parallelism as a strategy

MapReduce
Pregel

(vertex-centric) Blackboard

INPUT DATA

Chunk 1

Chunk 1’

Chunk 2

Chunk 2’

Chunk 3

Chunk 3’

Chunk 4

Chunk 4’

Worker 1 Worker 2 Worker 3 Worker 4

1.

2.

3.
Worker 1 Worker 2 Worker 3

23

1 CONTEXT & MOTIVATIONData-parallelism as a strategy

24

● Large number of distributed engines
○ Designed with ≠ purposes
○ Following ≠ design choices
○ Implemented on ≠ languages for ≠ infrastructures

⇒ What are the optimal design choices for a given case?

Parallel / Distributed in model
transformation 1 CONTEXT & MOTIVATION

25

1 CONTEXT & MOTIVATIONRelated work

● Automatic adapted strategy
○ Pattern matching (Bergman et al.)

● Classification of features of MDE solution
○ For languages (Tamura et al., M Rose et al.)
○ Transformation approaches (Czarnecki et al., Kahani et al.)
○ Performance oriented (Groner et al.)
○ Specific topic: bi-directionality (Hidaka et al.)

Amine Benelallam et al. «Efficient model partitioning for distributed model …» SLE 2016 X X X X

Amine Benelallam et al. «ATL-MR: model transformation on MapReduce» SPLASH 2015 X X X

Loli Burgueño et al. «A Linda-Based platform for the parallel execution …» IST 2016 X X X X

Loli Burgueño et al. «Towards distributed model transformations with LinTra» JISBD 2016 X X X X X

Loli Burgueño et al. «Parallel in-place model transformations with LinTra» CEUR-WS 2015 X X X X

Jesús S. Cuadrado et al. «Efficient execution of ATL model transformations …» TSE 2020 X X X

Gábor Imre et al. «Parallel graph transformations on multicore systems» MSEPT 2012 X X X

Christian Krause et al. «Implementing graph transformations in the BSP model» FASE 2014 X X X

Sina Madani et al. «Distributed model validation with Epsilon» SSM 2021 X X X X

Sina Madani et al. «Towards optimisation of model queries: a parallel …» ECMFA 2019 X X X X

Gergely Mezei et al. «Towards truly parallel model transformations: a …» EURCON 2019 X X X

Massimo Tisi et al. «Parallel execution of ATL transformation rules» MODELS 2013 X X X

Le-Duc Tung et al. «Towards systematic parallelization of graph transfo. …» IJPP 2017 X X X

Tamás Vajk et al. «Runtime model validation with parallel object …» MoDeVVa 2011 X X X
M

od
el

 q
ue

ry
M

od
el

 tr
an

sf
o.

Pa
tte

rn
 m

at
ch

.
O

pt
im

iz
at

io
n

Sh
ar

ed
 m

em
.

D
is

tri
b.

 m
em

.
Ta

sk
-p

ar
al

le
l

D
at

a-
pa

ra
lle

l
As

yn
ch

ro
ni

sm

26

Related work:
Optimization in model transformation

Optimization in model
transformation

27

■ What solution to use?
■ How to optimally configure a solution?

➢ Goal: Getting an insight of how design choices impact
scalability of a distributed transformation

1 CONTEXT & MOTIVATIONProblem: A configuration issue

Problem 1:
Many solutions for
executing
rules distributively

Problem 2:
Many solutions for
executing
queries distributively

Problem 3:
Lack of unified proposition
for comparing design
choices

28

Evaluation of distributed design choices for rule
execution
■ Building a new distributed transformation engine:

SparkTE

1 CONTEXT & MOTIVATIONContribution of the thesis

Problem 1:
Many solutions for executing
rules distributively

29

Evaluation of distributed design choices for rule
execution
■ Building a new distributed transformation engine:

SparkTE

Evaluation of distributed design choices for query
execution
■ Analysing different distributed execution strategies

for a query

1 CONTEXT & MOTIVATIONContribution of the thesis

Problem 1:
Many solutions for executing
rules distributively

Problem 2:
Many solutions for executing
queries distributively

30

Evaluation of distributed design choices for rule
execution
■ Building a new distributed transformation engine:

SparkTE

Evaluation of distributed design choices for query
execution
■ Analysing different distributed execution strategies

for a query

Make possible configurable distributed transformation
■ Modeling the design space
■ Making the configurable engine: Configurable

SparkTE

Problem 1:
Many solutions for executing
rules distributively

Problem 2:
Many solutions for executing
queries distributively

Problem 3:
Lack of unified proposition for
comparing design choices

1 CONTEXT & MOTIVATIONContribution of the thesis

31

1st Contribution
 SPARKTE, A DISTRIBUTED MODEL

TRANSFORMATION ENGINE
2.1

➢ Evaluation of distributed design choices for rule execution

Many solutions for executing
rules distributively

32

■ An engine with design choices for rule execution: SparkTE
■ Prove design choices have no impact on the result
■ Evaluate the scalability of a such engine

Problematic and proposal 2.1 SPARKTE: DIST. ENGINE

33

CoqTL for reasoning 2.1 SPARKTE: DIST. ENGINE

● Designed for specifying semantics
● A proof assistant based on Hoare

logic
● Extraction mechanism (to ML lang)

● DSL for rule-based model transformation
● Made for reasoning on transformations
● Can reason on the semantic of the

transformation

Coq

34

Spark as a target 2.1 SPARKTE: DIST. ENGINE

R SQL Python JavaScala

Apache Spark

Spark Core API

SQL GraphXStreaming MLlib

● Popular distributed computing for large-scale
data processing

● Support for many paradigms
○ MapReduce, vertex-based (Pregel), …

● Open-source

Cluster
managerPOOL OF

TASKS

worker
worker

worker

worker

master

communicate
submit

Driver
program

program

contentuser

job

35

Spark on Grid’5000 2.1 SPARKTE: DIST ENGINE

● French cluster for experimentation
● Library for benchmarking
● Support for distributed computing
● More than 15,000 cores; 800 nodes

36

user theorems

CoqTL
transformation

CoqTL

certify

runs on

Parallelizable
CoqTL

runs on

refines

Scala
transformation

ScalaTE

runs on

SparkTE

runs on

rule translation

extraction distribute
computation

Coq
Coq

Manual process
Relation between artifacts

2.1 SPARKTE: DIST. ENGINEEngine based on a formal semantic:
from CoqTL to SparkTE

37

user theorems

CoqTL
transformation

CoqTL

certify

runs on

Parallelizable
CoqTL

runs on

refines

Scala
transformation

ScalaTE

runs on

SparkTE

runs on

rule translation

extraction distribute
computation

Coq
Coq

Manual process
Relation between artifacts

Contribution

2.1 SPARKTE: DIST ENGINEEngine based on a formal semantic:
from CoqTL to SparkTE

38

● Increase parallelization
1. Two distinct phases: instantiate & apply

■ Define map-reduce phases

2. Iterate on rules instead of src patterns
■ Avoid unnecessary computations

3. Iterate on trace links instead of src patterns
■ Reuse of intermediate results

● Formal proof of equivalence with CoqTL

CoqTL Parallelizable
CoqTL

refines ScalaTE SparkTE
extraction distribute

computation

2.1 SPARKTE: DIST. ENGINEContribution: Parallelizable CoqTL as a
CoqTL refinement

39

● Increase parallelization
1. Two distinct phases: instantiate & apply

■ Define map-reduce phases

2. Iterate on rules instead of src patterns
■ Avoid unnecessary computations

3. Iterate on trace links instead of src patterns
■ Reuse of intermediate results

● Formal proof of equivalence with CoqTL

Spec. size
(LoC)

Cert. size
(LoC)

Proof effort
(man-days)

1. 69 484 10

2. 42 487 7

3. 69 520 4

CoqTL Parallelizable
CoqTL

refines ScalaTE SparkTE
extraction distribute

computation

2.1 SPARKTE: DIST. ENGINEContribution: Parallelizable CoqTL as a
CoqTL refinement

40

1. Produce executable and maintainable code
○ Object-oriented approach
○ Pure Scala functions (correctness)

2. Distribute the computation
○ Distribute data-structures
○ Explicit communication operations

■ Take advantage of scatter/gather operations
■ Broadcast global knowledge

CoqTL Parallelizable
CoqTL

refines ScalaTE SparkTE
extraction distribute

computation

2.1 SPARKTE: DIST. ENGINEContribution: Build executable and
distributed transformation engine

Coq

41

Data-distributed strategy: (Map-Reduce phase)
● Input elements are distributed
● Input model is broadcasted

As output:
● Instantiated output model elements
● Trace-links (mapping input-output)

sc
att

er

scatter

2.1 SPARKTE: DIST. ENGINEInstantiate phase: Create output elements

42

Data-distributed strategy: (Map-Reduce phase)
● Input elements are distributed
● Input model is broadcasted

As output:
● Instantiated output model elements
● Trace-links (mapping input-output)

sc
att

er

scatter

2.1 SPARKTE: DIST. ENGINEInstantiate phase: Create output elements

43

Data-distributed strategy: (Map-Reduce phase)
● Input elements are distributed
● Input model is broadcasted

As output:
● Instantiated output model elements
● Trace-links (mapping input-output)

sc
att

er

scatter
ga

the
r

gather

2.1 SPARKTE: DIST ENGINEInstantiate phase: Create output elements

44

broadcasted
trace-links

single apply
single apply
single apply
single apply

single apply
single apply
single apply

Data-distributed strategy: (Map-Reduce phase)
● Output elements are distributed
● Trace-links are broadcasted

sc
att

er

scatter

2.1 SPARKTE: DIST. ENGINEApply phase: Create output links

45

broadcasted
trace-links

Data-distributed strategy: (Map-Reduce phase)
● Output elements are distributed
● Trace-links are broadcasted

uses to resolve

{ ... }
{ ... }
{ ... }
{ ... }

{ ... }
{ ... }
{ ... }

sc
att

er

scatter

2.1 SPARKTE: DIST. ENGINEApply phase: Create output links

46

broadcasted
trace-links

Data-distributed strategy: (Map-Reduce phase)
● Output elements are distributed
● Trace-links are broadcasted

{ ... }
{ ... }
{ ... }
{ ... }

{ ... }
{ ... }
{ ... }

sc
att

er

scatter

ga
the

r

gather

2.1 SPARKTE: DIST. ENGINEApply phase: Create output links

47

ideal speedup
50% of ideal speedup

Model of 150 elements and 290 links, on 4 machines Model of 600 elements and 1060 links, 8 machines

● Simulate a uniform amount of computation on nodes
○ fixed time for each task

2.1 SPARKTE: DIST. ENGINEVertical scalability of model transformation
on Spark

48

2nd Contribution
 DISTRIBUTED QUERY

EVALUATION STRATEGIES
2.2

Many solutions for executing
queries distributively

49

Problematic and proposal QUERY EVAL. STRATEGIES2.2

➢ Evaluation of distributed design choices for query execution

■ Take a query whose evaluation is dependant from input model
■ Implement with several design choices
■ Evaluate them and try to correlate with input

50

● Query:
What is the score for a post in a social network?

● A score function
score(p: Post) ≔ # comments × 10 + # likes

Several design choices for running a query QUERY EVAL. STRATEGIES2.2

score(p: Post) := comments(p).size() * 10
 + likes(p).size()

comments(s: Submission) := [s.comments].
union(c: s.comments.flatMap(

λc.comments(c))

likes(p: Post) := comments(p).map(λc.likes)

● Design-choices for running the query:
1. Scala-OCL

■ No distribution (sequential)
2. Spark-OCL (Spark core API)

■ Delegate distribution to Spark
3. MapReduce (Spark core API)

■ More control of parallelism
4. Pregel from (GraphX)

■ Iterative process
5. Hybrid approaches

○ Spark-OCL + Pregel
○ MapReduce + Pregel

Several design choices (implementation) QUERY EVAL. STRATEGIES2.2

51

score(p: Post) :=
 comments(p).size() * 10
 + likes(p).size()

comments(s: Submission) :=
 [s.comments].union(

c: s.comments.flatMap(
λc.comments(c))

likes(p: Post) :=
 comments(p).map(λc.likes)

Dataset Speed-up (compared to Sequential Scala-OCL)

 # # users # posts # comments # likes Scala-
OCL

Spark-
OCL Pregel MapReduce Spark-OCL

+ Pregel
MapReduce

+ Pregel

1 889 1064 118 24 1x 0.39x 0.36x 0.46x 0.44x 0.46x

2 1845 2315 190 66 1x 0.51x 0.68x 0.85x 0.66x 0.71x

3 2270 5056 204 129 1x 0.27x 0.35x 2.34x 0.15x 2.96x

4 5518 9220 394 572 1x 4.25x 5.21x 4.17x 4.68x 4.03x

5 10929 18872 595 1598 1x 4.68x 2.83x 2.39x 1.97x 3.91x

6 18083 39212 781 4770 1x 4.07x 4.12x 4.58x 5.17x 3.27x

52

● Proposed models from TTC
● Calculate score value
● Cannot really extract relevant metrics about topology

Experiments QUERY EVAL. STRATEGIES2.2

Correlation matrix: input model vs. speed-ups
Size Spark- OCL Pregel MapReduce Spark-OCL + Pregel MapReduce + Pregel

users 0.78 0.67 0.74 0.76 0.39

posts 0.71 0.62 0.75 0.75 0.32

comments 0.86 0.74 0.78 0.79 0.51

likes 0.62 0.57 0.7 0.73 0.19

53

Experiments: Correlation input vs. results QUERY EVAL. STRATEGIES2.2

Correlation matrix: input model vs. speed-ups
Size Spark- OCL Pregel MapReduce Spark-OCL + Pregel MapReduce + Pregel

users 0.78 0.67 0.74 0.76 0.39

posts 0.71 0.62 0.75 0.75 0.32

comments 0.86 0.74 0.78 0.79 0.51

likes 0.62 0.57 0.7 0.73 0.19

54

Experiments: Correlation input vs. results QUERY EVAL. STRATEGIES2.2

Correlation matrix: ratio in input model vs speed-ups

Spark-OCL Pregel MapReduce Spark-OCL + Pregel MapReduce + Pregel

ratio: #users / #likes -0.85 -0.79 -0.89 -0.75 -0.82

ratio: #posts / #likes -0.96 -0.88 -0.82 -0.85 -0.66

ratio: #comments / #likes -0.8 -0.74 -0.86 -0.69 -0.83

55

3rd Contribution
 FEATURE ANALYSIS2.3

56

Problematic and proposal FEATURE ANALYSIS2.3

➢ Make possible configurable distributed transformation

■ Formalized past contributions and additional design choices
■ Design a configurable engine
■ Evaluate them and analyse impact

Lack of unified proposition for
comparing design choices

57

SOURCE
MODEL TARGET

MODELTRANSFORMATION
SparkTE

Configurable engine FEATURE ANALYSIS2.3

58

SOURCE
MODEL TARGET

MODELTRANSFORMATION
SparkTE

SOURCE
MODEL TARGET

MODEL
TRANSFORMATION

CONFIGURATION

Configurable
SparkTE

PERFORMANCE
RESULTS

● Take as input a configuration conforms to the feature model
● Produce as output performance results (computation time)

Configurable engine FEATURE ANALYSIS2.3

59

Model
implementation

SparkTE Features

Sequential
Model

AccessOn
HashMap

Links
Navigation

IterateOn
List

Distributed
Model

LinksById

pregel

Links
Navigation

OCL
primitives

Model
storage

OnDisk InMemory Tuples
generation

ByRules

Distinct

ByInputDistributively TraceLinks
navigation

Resolve
List

Resolve
HashMap ById

With
Rule

Two
phases

Distinct
From

TraceLinks

Mandatory
Alternative (xor)

Optional

SparkTE feature diagram FEATURE ANALYSIS2.3

Spark
communication

Implicit

Explicit

60

Model
implementation

SparkTE Features

Sequential
Model

AccessOn
HashMap

Links
Navigation

IterateOn
List

Distributed
Model

LinksById

pregel

Links
Navigation

OCL
primitives

Model
storage

OnDisk InMemory Tuples
generation

ByRules

Distinct

ByInputDistributively TraceLinks
navigation

Resolve
List

Resolve
HashMap ById

With
Rule

Two
phases

Distinct
From

TraceLinks

Mandatory
Alternative (xor)

Optional

SparkTE feature diagram FEATURE ANALYSIS2.3

Spark
communication

Implicit

Explicit

Optimization from
Parallelizable CoqTL

Distributed query
strategies

61

Model
implementation

SparkTE Features

Sequential
Model

AccessOn
HashMap

Links
Navigation

IterateOn
List

Distributed
Model

LinksById

pregel

Links
Navigation

OCL
primitives

Model
storage

OnDisk InMemory Tuples
generation

ByRules

Distinct

ByInputDistributively TraceLinks
navigation

Resolve
List

Resolve
HashMap ById

With
Rule

Two
phases

Distinct
From

TraceLinks

Mandatory
Alternative (xor)

Optional

SparkTE feature diagram FEATURE ANALYSIS2.3

Spark
communication

Implicit

Explicit

62

Model implementation

Sequential
Model

AccessOnHashMap

Links Navigation

IterateOnList

● :
○ Additional computation in

model loading
○ Increase memory usage
○ Direct access on links from

elements

FEATURE ANALYSIS2.3Feature 1: Link navigation strategy in
sequential model

IterateOnList

AccessOnHashMap

● :
○ Navigation by iteration
○ Simple to set-up

63

FEATURE ANALYSIS2.3Feature 2: Trace-Links structure and
resolution in apply phase

From TraceLinks

TraceLinks
navigation

ResolveHashMapResolveList

● :
○ Resolution by iteration
○ Naturally gathered by master

node

● :
○ Additional computation in

instantiate phase
○ Increase memory usage
○ Fastest resolution

ResolveHashMap

ResolveList

64

Configuration 1:
Links navigation

Configuration 2:
TraceLinks navigation

Computation
time (sec)

Instantiate
phase (sec)

Apply
phase (sec)

IterateOnList ResolveList 1636 sec 3 sec 1633 sec

IterateOnList ResolveHashMap 1584 sec 3 sec 1581 sec

AccessOnHashMap ResolveList 233 sec 6 sec 227 sec

AccessOnHashMap ResolveHashMap 12 sec 6 sec 6 sec

Execution of Identity transformation on a model of 100k elements and 250k links (4 cores)

FEATURE ANALYSIS2.3Using configurable engine to find
features synergie

➢ TraceLinks navigation‘s impact
○ on the whole computation is negligible
○ is important when Links navigation is processed by AccessOnHashMap

➢ Links navigation’s impact
○ decreases the whole computation time
○ increases the computation time of the instantiate phase

65

Feature label Parallelizable CoqTL
design choices (C1)

Optimal design
choices (C2)

Model implementation Sequential Model Sequential Model

○ linksById false false

● Link Navigation IterateOnList ResolveHashMap

Model storage InMemory InMemory

Spark communication Implicit Explicit

Tuples generation ByRules ByInput

○ Distributively false false

○ Distinct false true

TraceLinks Navigation ResolveList ResolveList

○ byId false false

○ withRule false true

○ Distinct false true

FEATURE ANALYSIS2.3Design-space exploration for the
Find affinity case

66

Feature label Parallelizable CoqTL
design choices (C1)

Optimal design
choices (C2)

Model implementation Sequential Model Sequential Model

○ linksById false false

● Link Navigation IterateOnList ResolveHashMap

Model storage InMemory InMemory

Spark communication Implicit Explicit

Tuples generation ByRules ByInput

○ Distributively false false

○ Distinct false true

TraceLinks Navigation ResolveList ResolveList

○ byId false false

○ withRule false true

○ Distinct false true

#elements #links C1 computation
time

C2 computation
time

1000 3000 9.799 sec 4.978 sec

2500 7300 81.047 sec 7.803 sec

5000 15000 882.708 sec 19.127 sec

7500 22000 > 2h 36.928 sec

10000 45000 Timeout error 65.198 sec

➢ The feature model is useful for comparing
implementations

➢ Gives useful insights about the engine
➢ Highlighted correlation between features

FEATURE ANALYSIS2.3Design-space exploration for the
Find affinity case

67

CONCLUSION

Contribution of the thesis 3 CONCLUSION

 Built a distributed solution from a specification
■ Re-designed specification to make it distributable
■ Made a proof of equivalence for optimizations
■ Shown our solution is scalable

 Evaluated distributed execution strategies for a query
■ Implemented three design-choices
■ Proposed hybrid solution
■ Performance variation depending on the strategy

 Formalized features in our distributed solution
■ Shown the synergies between them
■ Shown the impact on performance

Problem 1:
Many solutions for executing
rules distributively

Problem 2:
Many solutions for executing
queries distributively

Problem 3:
Need an unified proposition
for comparing design choices

68

● Jolan Philippe, Hélène Coullon, Massimo Tisi, Gerson Sunyé. Towards Transparent
Combination of Model Management Execution Strategies for Low-Code
Development Platforms. 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems (MODELS): Companion Proceedings, Oct 2020,
Montreal (Virtually), Canada. 10.1145/3417990.3420206. Hal-02952952

● Jolan Philippe, Massimo Tisi, Hélène Coullon, Gerson Sunyé. Executing Certified
Model Transformations on Apache Spark. 14th ACM SIGPLAN International
Conference on Software Language Engineering (SLE), Oct 2021, Chicago IL, United
States. 10.1145/3486608.3486901. Hal-03343942

● Ongoing: Jolan Philippe, Massimo Tisi, Gerson Sunyé. Analysis of the Design-Space
of a Distributed Transformation Engine. Software and Systems Modeling (SoSyM)

● Several public Lowcomote deliverables
○ Concepts for Multi-paradigm distributed transformation
○ Scalable low-code artefact persistence and query
○ Multi-paradigm distributed transformation engine 69

Publications 3 CONCLUSION

70

+ Other execution strategies (≠ data-dist)
○ Take advantage of Spark for task-distribution
○ Combine incrementality and laziness to

distribution

● Automated design-space exploration for a given scenario
○ A model of the input (e.g., topological metrics)
○ A model of the platform (Spark and ≠)
○ Constraints and requirements

● Other parameters to optimize (≠ CPU time)
■ Network bandwidth
■ Memory consumption
■ Energy consumption/production

3 CONCLUSIONFuture work

Contribution to the Analysis of the
Design-Space of a Distributed

Transformation Engine
Jolan PHILIPPE

PhD Defense, speciality: Computer Science

THANK
YOU

QUESTIONS ?

71

