ESR 1: Scaling Up Citizen Development with Recommender Chatbots
Lissette Almonte GarciaUniversidad Autόnoma de Madrid (Spain)
Objectives
The users of LCDPs (so called citizen developers) frequently lack a technical profile. This is a practical factor that hinders the applicability of LCDPs to create complex systems.
In order to support citizen developers to create applications beyond toy apps, we propose the concept of software development chatbots. We envision that these chatbots will be addressed in natural language to issue queries on how to achieve some goals (“I want the application to do X, Y and Z”), or how to perform some task within the current project (“How do I make the app to send an e-mail to all registered customers?”). The chatbots will include a query answering component, and will provide example fragments and templates. Such fragments will be extracted from repositories of existing application descriptions, using information retrieval (IR) techniques. The chatbots will be proactive as well, suggesting artefacts specifically designed for LCEPs and IDEs. For this purpose, chatbots will use conversational recommendation techniques that will exploit preferences of the target user and like-minded users, artefact attributes, and contextual (action-based) data.
The use of bots has been identified as a possible disruptive technology in software engineering, with high potential to improve developer performance through automation and natural interaction. Developers use bots, e.g., to automate deployment tasks, schedule tasks like sending reminders, integrate communication channels, or for customer support. Bots have also been proposed to access API documentation, to analyse software projects, or to assist in modelling activities using natural language (by our team). However, a system to build chatbots for domain-specific artefact recommendation – able to process queries in natural language and use information retrieval and machine learning techniques – is novel.
Expected Results
This project will develop novel concepts to create systems that combine recommendation, information retrieval and query answering for specific domains and platforms. The systems will be able to scale for recommendations in repositories of millions of artefacts, and will be embeddable in platforms like Lowcomotive, and social networks like Slack or Telegram. We target at empowering citizen developers to create more complex apps, and in these scenarios, we will target at improvements in development times in the order of 30%.
Publications
-
Building recommender systems for modelling languages with Droid.. Lissette Almonte Garcia, Esther Guerra, Juan de Lara, Oct. 2022. 37th IEEE/ACM International Conference on Automated Software Engineering (ASE)
-
Automating the Synthesis of Recommender Systems for Modelling Languages. Lissette Almonte Garcia, Sara Perez-Soler, Esther Guerra, Ivan Cantador, Juan de Lara, Oct. 2021. ACM SIGPLAN International Conference on Software Language Engineering (SLE), (Virtual)
-
Recommender Systems in Model-Driven Engineering. A Systematic Mapping Review. Lissette Almonte Garcia, Esther Guerra, Iván Cantador, Juan de Lara, Jun. 2021. Software and Systems Modelling
-
Towards automating the construction of recommender systems for low-code development platforms. Lissette Almonte Garcia, Iván Cantador, Esther Guerra, Juan de Lara, Oct. 2020. ACM/IEEE 23rd International Conference on Model Driven Engineering Languages and Systems, (Virtual Conference) (MODELS 2020)
Supervisors
-
Esther Guerra
Supervision (UAM)
-
Iván Cantador
Supervision (UAM)
Secondments
Secondment 1: Collaboration with ESR6 on aligning machine learning techniques with the structure
of the repository.
-
Arsene Indamutsa
ESR 6
(Univaq)
-
Alfonso Pierantonio
Supervision
(Univaq)
-
Davide Di Ruscio
Supervision
(Univaq)
Secondment 2: Collaboration with ESR3 on applying recommendation techniques in the data science domain.
-
Panagiotis Kourouklidis
ESR 3
(BT)
-
Joost Noppen
Supervision
(BT)
Will be visited by
-
MohammadHadi Dehghani
ESR 7
(JKU)
-
Faezeh Khorram
ESR 10
(IMT)
Other ESR:
1;
2;
3;
4;
5;
6;
7;
8;
9;
10;
11;
12;
13;
14;
15;
-
Arsene Indamutsa
ESR 6 (Univaq)
-
Alfonso Pierantonio
Supervision (Univaq)
-
Davide Di Ruscio
Supervision (Univaq)
Secondment 2: Collaboration with ESR3 on applying recommendation techniques in the data science domain.
-
Panagiotis Kourouklidis
ESR 3
(BT)
-
Joost Noppen
Supervision
(BT)
Will be visited by
-
MohammadHadi Dehghani
ESR 7
(JKU)
-
Faezeh Khorram
ESR 10
(IMT)
Other ESR:
1;
2;
3;
4;
5;
6;
7;
8;
9;
10;
11;
12;
13;
14;
15;
-
Panagiotis Kourouklidis
ESR 3 (BT)
-
Joost Noppen
Supervision (BT)
Will be visited by
-
MohammadHadi Dehghani
ESR 7 (JKU)
-
Faezeh Khorram
ESR 10 (IMT)
Other ESR: 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15;